Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(23): e2308939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600650

ABSTRACT

Lithium metal, with ultrahigh theoretical specific capacity, is considered as an ideal anode material for the lithium-ion batteries. However, its practical application is severely plagued by the uncontrolled formation of dendritic Li. Here, a cation-loaded porous Mg2+-Zeolite layer is proposed to enable the dendrite-free deposition on the surface of Li metal anode. The skeleton channels of zeolite provide the low coordinated Li+-solvation groups, leading to the faster desolvation process at the interface. Meanwhile, anions-involved solvation sheath induces a stable, inorganic-rich SEI, contributing to the uniform Li+ flux through the interface. Furthermore, the co-deposition of sustained release Mg2+ realizes a new faster migration pathway, which proactively facilitates the uniform diffusion of Li on the lithium substrate. The synergistic modulation of these kinetic processes facilitates the homogeneous Li plating/stripping behavior. Based on this synergistic mechanism, the high-efficiency deposition with cyclic longevity exceeding 2100 h is observed in the symmetric Li/Li cell with Mg2+-Zeolite modified anode at 1 mA cm-2. The pouch cell matched with LiFePO4 cathode fulfills a capacity retention of 88.4% after 100 cycles at a severe current density of 1 C charge/discharge. This synergistic protective mechanism can give new guidance for realizing the safe and high-performance Li metal batteries.

2.
Adv Mater ; 36(8): e2310396, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37991107

ABSTRACT

The manufacturing and assembly of components within cells have a direct impact on the sample performance. Conventional processes restrict the shapes, dimensions, and structures of the commercially available batteries. 3D printing, a novel manufacturing process for precision and practicality, is expected to revolutionize the lithium battery industry owing to its advantages of customization, mechanization, and intelligence. This technique can be used to effectively construct intricate 3D structures that enhance the designability, integrity, and electrochemical performance of both liquid- and solid-state lithium batteries. In this study, an overview of the development of 3D printing technologies is provided and their suitability for comparison with conventional printing processes is assessed. Various 3D printing technologies applicable to lithium-ion batteries have been systematically introduced, especially more practical composite printing technologies. The practicality, limitations, and optimization of 3D printing are discussed dialectically for various battery modules, including electrodes, electrolytes, and functional architectures. In addition, all-printed batteries are emphatically introduced. Finally, the prospects and challenges of 3D printing in the battery industry are evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL