Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 766
Filter
1.
J Pak Med Assoc ; 74(6): 1175-1177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948994

ABSTRACT

Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency disorder with different phenotypes and aetiologies. It is characterised by hypogammaglobulinaemia, defects in specific antibody response, erroneous activation and proliferation of T cells, leading to increased risk of recurrent infections. In CVID, "Variable" refers to the heterogeneity of clinical presentations, which include recurrent infections, autoimmunity, enteropathy, and increased risk of malignancies. This wide spectrum of disease manifestations and being a diagnosis of exclusion poses a diagnostic challenge. It is pertinent to mention that CVID along with associated complications is the commonest symptomatic primary antibody deficiency but is scarcely mentioned in local literature. The main aim of presenting this case is to impress upon the importance of systematic immunological workup in cases of suspected immunodeficiency to prevent morbidity and mortality.


Subject(s)
Common Variable Immunodeficiency , Developing Countries , Humans , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/complications , Male , Female , Adult
2.
Expert Opin Ther Pat ; : 1-10, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965930

ABSTRACT

INTRODUCTION: Boswellic acids (BAs) are a group of pentacyclic triterpenoids of the ursane and oleanane type. They have shown very interesting biological properties that have led to the development of a number of synthesis protocols. Both natural BAs and their synthetic derivatives may be useful in the treatment of a variety of cancers, viral infections and inflammatory diseases. AREAS COVERED: This review covers patents relating to the therapeutic activities of natural BAs and their synthetic derivatives. The latest patented studies of boswellic acids (are summarized by using the keywords 'boswellic acid,' in SciFinder, PubMed, and Google Patents and databases in the year from 2016 to 2023. EXPERT OPINION: Boswellic acids have shown potent antiviral, anticancer and anti-inflammatory potential. Few BAs analogues have been prepared by modification at the C24-CO2H functional groups. In particular, the C-24 amide and amino analogues have shown enhanced anticancer effects compared to the parent AKBA. In addition, BAs have the ability to form conjugates with other antiviral, anti-inflammatory and anticancer drugs that synergistically enhance their biological efficacy. In addition, this conjugation strategy will increase the solubility and bioavailability of BAs, which is one of the most important issues in the development of BAs.

3.
ACS Omega ; 9(26): 28827-28840, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973903

ABSTRACT

Hydrogels with the main objective of releasing mesalamine (5-aminosalicylic acid) in the colon in a modified manner were formulated in the present work using a free-radical polymerization approach. Different ratios of hyaluronic acid were cross-linked with methacrylic and acrylic acids using methylenebis(acrylamide). The development of a new polymeric network and the successful loading of drug were revealed by Fourier transform infrared spectroscopy. Thermogravimetric analysis demonstrated that the hydrogel was more thermally stable than the pure polymer and drug. Scanning electron microscopy (SEM) revealed a rough and hard surface which was relatively suitable for efficient loading of drug and significant penetration of dissolution medium inside the polymeric system. Studies on swelling and drug release were conducted at 37 °C in acidic and basic conditions (pH 1.2, 4.5, 6.8, and 7.4, respectively). Significant swelling and drug release occurred at pH 7.4. Swelling, drug loading, drug release, and gel fraction of the hydrogels increased with increasing hyaluronic acid, methacrylic acid, and acrylic acid concentrations, while the sol fraction decreased. Results obtained from the toxicity study proved the formulated system to be safe for biological systems. The pH-sensitive hydrogels have the potential to be beneficial for colon targeting due to their pH sensitivity and biodegradability. Inflammatory bowel disease may respond better to hydrogel treatment as compared to conventional dosage forms. Specific amount of drug is released from hydrogels at specific intervals to maintain its therapeutic concentration at the required level.

4.
Physiol Plant ; 176(4): e14416, 2024.
Article in English | MEDLINE | ID: mdl-38952344

ABSTRACT

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Gene Regulatory Networks , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Fruit/genetics , Fruit/drug effects , Fruit/metabolism , Vanadium/pharmacology , Stress, Physiological/genetics , Caragana/genetics , Caragana/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps , Gene Expression Profiling , Droughts , Transcriptome/genetics , Transcriptome/drug effects , Cactaceae
5.
BMC Plant Biol ; 24(1): 597, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914943

ABSTRACT

Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.


Subject(s)
Metal Nanoparticles , Plant Diseases , Silver , Solanum lycopersicum , Solanum lycopersicum/microbiology , Silver/pharmacology , Metal Nanoparticles/chemistry , Plant Diseases/microbiology , Clavibacter , Moringa oleifera/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Green Chemistry Technology , Plant Leaves/microbiology
6.
Int J Biol Macromol ; 273(Pt 2): 133016, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876235

ABSTRACT

Mucilage is a gelatinous mixture of polysaccharides secreted from the seed coat and/or pericarp of many plant seeds when soaked in water. Mucilage affected seed germination while maintaining hydration levels during scarcity. Cydonia oblonga (quince) seeds are natural hydrocolloids extruding biocompatible mucilage mainly composed of polysaccharides. Quince seed mucilage (QSM) has fascinated researchers due to its applications in the food and pharmaceutical industries. On a commercial scale, QSM preserved the sensory and physiochemical properties of various products such as yogurt, desserts, cakes, and burgers. QSM is responsive to salts, pH, and solvents and is mainly investigated as edible coatings in the food industry. In tablet formulations, modified and unmodified QSM as a binder sustained the release of various drugs such as cefixime, capecitabine, diclofenac sodium, theophylline, levosulpiride, diphenhydramine, metoprolol tartrate, and acyclovir sodium. QSM acted as a reducing and capping agent to prepare nanoparticles for good antimicrobial resistance, photocatalytic characteristics, and wound-healing potential. The present review discussed the extraction optimization, chemical composition, stimuli-responsiveness, and viscoelastic properties of mucilage. The potential of mucilage in edible films, tissue engineering, and water purification will also be discussed.


Subject(s)
Food Packaging , Seeds , Xylans , Seeds/chemistry , Food Packaging/methods , Xylans/chemistry , Rosaceae/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Plant Mucilage/chemistry
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124534, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38878718

ABSTRACT

In this study, Gordonia sp. HS126-4N was employed for dibenzothiophene (DBT) biodesulfurization, tracked over 9 days using SERS. During the initial lag phase, no significant spectral changes were observed, but after 48 h, elevated metabolic activity was evident. At 72 h, maximal bacterial population correlated with peak spectrum variance, followed by stable spectral patterns. Despite 2-hydroxybiphenyl (2-HBP) induced enzyme suppression, DBT biodesulfurization persisted. PCA and PLS-DA analysis of the SERS spectra revealed distinctive features linked to both bacteria and DBT, showcasing successful desulfurization and bacterial growth stimulation. PLS-DA achieved a specificity of 95.5 %, sensitivity of 94.3 %, and AUC of 74 %, indicating excellent classification of bacteria exposed to DBT. SERS effectively tracked DBT biodesulfurization and bacterial metabolic changes, offering insights into biodesulfurization mechanisms and bacterial development phases. This study highlights SERS' utility in biodesulfurization research, including its use in promising advancements in the field.


Subject(s)
Gordonia Bacterium , Spectrum Analysis, Raman , Thiophenes , Thiophenes/metabolism , Thiophenes/chemistry , Spectrum Analysis, Raman/methods , Gordonia Bacterium/metabolism , Sulfur/metabolism , Sulfur/chemistry , Biodegradation, Environmental
8.
Neurol Clin Pract ; 14(4): e200321, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38855713

ABSTRACT

Background and Objectives: Without brain biopsy, there are limited diagnostic predictors to differentiate primary angiitis of the CNS (PACNS) from intracranial atherosclerotic disease (ICAD). We examined the utility of clinical, CSF, and quantitative vessel wall magnetic resonance imaging (VWMRI) variables in predicting PACNS from ICAD. Methods: In this cross-sectional design, observational study, we reviewed electronic medical records to identify patients (18 years and older) who presented to our medical center between January 2015 and December 2021 for ischemic stroke due to intracranial vasculopathy. Patients with biopsy-proven PACNS, probable PACNS, or ICAD were included. Patients with secondary CNS vasculitis or no VWMRI data were excluded. On VWMRI, for each patient, a total of 20 vessel wall segments were analyzed for percent concentricity, percent irregularity, and concentricity to eccentricity (C/E) ratios. We also collected several clinical and CSF variables. Using logistic regression models, we assessed the diagnostic value of VWMRI, CSF, and clinical variables in predicting PACNS in patients with biopsy-proven disease. We then performed a sensitivity analysis to assess predictors of biopsy-proven and probable PACNS. Results: Thirty-two patients with ICAD (54.2%) and 27 patients with PACNS (45.8%) were included. Of the patients with PACNS, 21 (77.8%) were not biopsied and considered probable PACNS. Twenty-four patients with ICAD (75%) and 6 biopsy-proven patients with PACNS (22.2%) showed large vessel involvement and were included in the primary analysis. Encephalopathy (odds ratio [OR], 7.60; 95% CI 1.07-54.09) and seizure (OR 23.00; 95% CI 1.77-298.45) were significantly associated with PACNS. All patients were included in the sensitivity analysis, in which headache significantly predicted PACNS (OR 7.60; 95% CI 1.07-54.09). In the primary analysis, for every 1 white blood cell/µL increase in CSF, there was a 47% higher odds of PACNS (OR 1.47; 95% CI 1.04-2.07). On VWMRI, a C/E ratio >1 (OR 115.00; 95% CI 6.11-2165.95), percent concentricity ≥50% (OR 55.00; 95% CI 4.13-732.71), and percent irregularity <50% (OR 55.00; 95% CI 4.13-732.71) indicated significantly higher odds of PACNS compared with ICAD. Discussion: Our results suggest that quantitative VWMRI metrics, CSF pleocytosis, and clinical features of encephalopathy, seizure, and headache significantly predict a diagnosis of probable PACNS when compared with ICAD.

9.
Eur J Case Rep Intern Med ; 11(6): 004482, 2024.
Article in English | MEDLINE | ID: mdl-38846657

ABSTRACT

Introduction: Biloma is an uncommon form of liver abscess composed of bile usually associated with procedures of the biliary tree and gallbladder. Cholangitis can be acute or chronic, can result in partial or complete obstruction of the flow of bile. The infection of the bile is so common, that positive blood cultures are highly characteristic. In the case of a suppurative cholangitis with signs of sepsis treatment alone with antibiotics is usually not sufficient to achieve medical remission. Multiple hepatic abscesses are often present, and the mortality approaches 100% unless prompt endoscopic or surgical relief of the obstruction and drainage of infected bile are carried out. Endoscopic retrograde cholangiopancreatography ERCP with endoscopic sphincterotomy is the preferred initial procedure for both establishing a definitive diagnosis and providing effective therapy. Case description: We present the case of a 69-year-old female patient with complex chronic comorbidities who presented with acute cholangitis initially managed with endoscopically inserted stent and later complicated by sepsis and biloma formation. The bile was drained, and it showed an infection with Candida spp. requiring antifungal therapy. Conclusions: The failure to perform sphincterotomy in patients with suppurative cholangitis can contribute to the backflow of bile and worse outcomes. LEARNING POINTS: Biloma formation is a rare complication of biliary duct procedures and diseases such as cholangitis. A prompt identification of signs of complications in patients with disease of the biliary ducts is key in preventing clinical deterioration.Sphincterotomy is vital in the management of ascending cholangitis, as it prevents backflow of bile into the intrahepatic biliary system.The presence of multiple comorbidities in complex cases can become an obstacle to optimal management and drainage of septic bile.

11.
Sci Rep ; 14(1): 12854, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834735

ABSTRACT

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Subject(s)
Ferric Compounds , Gallic Acid , Salt Stress , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/metabolism , Gallic Acid/metabolism , Zinc/metabolism , Photosynthesis/drug effects , Nanoparticles/chemistry , Chlorophyll/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Salinity , Soil/chemistry
12.
Food Chem ; 457: 140096, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38905830

ABSTRACT

The research explored the role of γ-oryzanol (γs) on stabilization behavior of Pickering emulsion gels (PEGs) loaded by α-lactalbumin (α-LA) or ß-lactoglobulin (ß-LG), being analyzed by experimental and computer methods (molecular dynamic simulation, MD). Primarily, the average particle size of ß-LG-γS was expressed 100.07% decrease over that of α-LA-γS. In addition, γs decreased the dynamic interfacial tension of two proteins with the order of ß-LG < α-LA. Meanwhile, quartz crystal microbalance with dissipation proved that ß-LG-γS exhibited higher adsorption mass and denser rigid interface layer than α-LA-γS. Moreover, the hydrophobic group of γS had electrostatic repulsion with polar water molecules in the aqueous phase, which spread to the oil phase. ß-LG-γS had lower RMSD/Rg value and narrower fluctuation compared with α-LA-γS. This work strength the exploration of interfacial stabilization mechanism of whey protein-based PEGs, which enriched its theoretical research for industrial-scale production as the replacement of trans fat and cholesterol.

13.
Food Chem ; 457: 140059, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38905835

ABSTRACT

Purified flavonoids (PF) from Moringa oleifera leaves were incorporated in chitosan (CS) polymer at different concentrations (0.5-4%) to produce a novel edible film. The physical, structure, mechanical, and bio-functional characterizations of the film were evaluated. The incorporation of PF significantly (p < 0.05) improved the thickness, solubility, swelling, and color of CS-films. Incorporating 4% of Moringa oleifera purified flavonoids (MOPF) improved the water vapor permeability from 8.85 to 2.47 g-1 s-1 Pa-1, and increased the film surface heterogeneity observed by SEM. Results also indicated that PF enhanced the mechanical properties and thermal stability of CS-films. The FTIR results indicated alterations in the CS-MOPF composite films' characteristics. Additionally, the incorporation of MOPF increased the antioxidation capacity. Furthermore, 4% of MOPF inhibited the activity of pathogenic bacteria in packed beef burgers. These results suggest that CS-MOPF composite films with enhanced technological and bio-functional properties could be industrially applied to increase the shelf-life of packaged foods.

14.
BMJ Paediatr Open ; 8(1)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844384

ABSTRACT

BACKGROUND: Knowledge about multisystem inflammatory syndrome in children (MIS-C) is evolving, and evidence-based standardised diagnostic and management protocols are lacking. Our review aims to summarise the clinical and diagnostic features, management strategies and outcomes of MIS-C and evaluate the variances in disease parameters and outcomes between high-income countries (HIC) and middle-income countries (MIC). METHODS: We searched four databases from December 2019 to March 2023. Observational studies with a sample size of 10 or more patients were included. Mean and prevalence ratios for various variables were pooled by random effects model using R. A mixed generalised linear model was employed to account for the heterogeneity, and publication bias was assessed via funnel and Doi plots. The primary outcome was pooled mean mortality among patients with MIS-C. Subgroup analysis was conducted based on the income status of the country of study. RESULTS: A total of 120 studies (20 881 cases) were included in the review. The most common clinical presentations were fever (99%; 95% CI 99.6% to 100%), gastrointestinal symptoms (76.7%; 95% CI 73.1% to 79.9%) and dermatological symptoms (63.3%; 95% CI 58.7% to 67.7%). Laboratory investigations suggested raised inflammatory, coagulation and cardiac markers. The most common management strategies were intravenous immunoglobulins (87.5%; 95% CI 82.9% to 91%) and steroids (74.7%; 95% CI 68.7% to 79.9%). Around 53.1% (95% CI 47.3% to 58.9%) required paediatric intensive care unit admissions, and overall mortality was 3.9% (95% CI 2.7% to 5.6%). Patients in MIC were younger, had a higher frequency of respiratory distress and evidence of cardiac dysfunction, with a longer hospital and intensive care unit stay and had a higher mortality rate than patients in HIC. CONCLUSION: MIS-C is a severe multisystem disease with better mortality outcomes in HIC as compared with MIC. The findings emphasise the need for standardised protocols and further research to optimise patient care and address disparities between HIC and MIC. PROSPERO REGISTRATION NUMBER: CRD42020195823.


Subject(s)
Systemic Inflammatory Response Syndrome , Humans , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/therapy , Systemic Inflammatory Response Syndrome/mortality , Child , COVID-19/mortality , COVID-19/diagnosis , COVID-19/therapy , COVID-19/complications
15.
Mol Biol Rep ; 51(1): 783, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926176

ABSTRACT

BACKGROUND: Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental and genetically heterogeneous disorder, characterized by small cranium size (> - 3 SD below mean) and often results in varying degree of intellectual disability. Thirty genes have been identified for the etiology of this disorder due to its clinical and genetic heterogeneity. METHODS AND RESULTS: Here, we report two consanguineous Pakistani families affected with MCPH exhibiting mutation in WDR62 gene. The investigation approach involved Next Generation Sequencing (NGS) gene panel sequencing coupled with linkage analysis followed by validation of identified variants through automated Sanger sequencing and Barcode-Tagged (BT) sequencing. The molecular genetic analysis revealed one novel splice site variant (NM_001083961.2(WDR62):c.1372-1del) in Family A and one known exonic variant NM_001083961.2(WDR62):c.3936dup (p.Val1313Argfs*18) in Family B. Magnetic Resonance Imaging (MRI) scans were also employed to gain insights into the structural architecture of affected individuals. Neurological assessments showed the reduced gyral and sulcal patterns along with normal corpus callosum in affected individuals harboring novel variant. In silico assessments of the identified variants were conducted using different tools to confirm the pathogenicity of these variants. Through In silico analyses, both variants were identified as disease causing and protein modeling of exonic variant indicates subtle conformational alterations in prophesied protein structure. CONCLUSION: This study identifies a novel variant (c.1372-1del) and a recurrent pathogenic variant c.3936dup (p.Val1313Argfs*18) in the WDR62 gene among the Pakistani population, expanding the mutation spectrum for MCPH. These findings emphasize the importance of genetic counseling and awareness to reduce consanguinity and address the burden of this disorder.


Subject(s)
Consanguinity , Microcephaly , Mutation , Nerve Tissue Proteins , Pedigree , Humans , Microcephaly/genetics , Female , Male , Pakistan , Mutation/genetics , Nerve Tissue Proteins/genetics , Neuroimaging/methods , Child , Magnetic Resonance Imaging/methods , High-Throughput Nucleotide Sequencing/methods , Child, Preschool , Adolescent , Cell Cycle Proteins
16.
RSC Adv ; 14(28): 20290-20299, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932985

ABSTRACT

Fossil fuels are considered vital natural energy resources on the Earth, and sulfur is a natural component present in them. The combustion of fossil fuels releases a large amount of sulfur in the form of SO x in the atmosphere. SO x is the major cause of environmental problems, mainly air pollution. The demand for fuels with ultra-low sulfur is growing rapidly. In this aspect, microorganisms are proven extremely effective in removing sulfur through a process known as biodesulfurization. A major part of sulfur in fossil fuels (coal and oil) is present in thiophenic structures such as dibenzothiophene (DBT) and substituted DBTs. In this study, the identification and characterization of DBT desulfurizing bacteria (Chryseobacterium sp. IS, Gordonia sp. 4N, Mycolicibacterium sp. J2, and Rhodococcus sp. J16) based on their specific biochemical constituents were conducted using surface-enhanced Raman spectroscopy (SERS). By differentiating DBT desulfurizing bacteria, researchers can gain insights into their unique characteristics, thus leading to improved biodesulfurization strategies. SERS was used to differentiate all these species based on their biochemical differences and different SERS vibrational bands, thus emerging as a potential technique. Moreover, multivariate data analysis techniques such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to differentiate these DBT desulfurizing bacteria on the basis of their characteristic SERS spectral signals. For all these isolates, the accuracy, sensitivity, and specificity are above 90%, and an AUC (area under the curve) value of close to 1 was achieved for all PLS-DA models.

17.
Pak J Pharm Sci ; 37(1(Special)): 199-203, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747270

ABSTRACT

This study investigates the combined effect of vitamin C and chromium on BMI, lipid profile, LFTs and HbA1c of Diabetes Mellitus type 2 patients. This is randomized controlled trial study. For this study a total of 60 patients (n=28 female, n=32 male) Diabetes Mellitus type 2 patients were selected. They were divided into treatment group (vitamin C (500mg) Chromium (200µg) and control group (placebo) comprising thirty patients per group. Mean age in control group and treatment group is 33± 5.729 and 33±7.017 respectively. Statistical analysis showed significant results of lipid profile; total cholesterol (mg/dl) 198±66.1 P=0.008, High-Density Lipoprotein 38±7.5, P<0.001, Low Density Lipoprotein (LDL) (mg/dl) 105.1±22.4, P=0.002 and Triglycerides 191±64.3, P=0.02 are respectively. Levels of serum ALT (u/l) (34.7±9.1, P<0.001) and AST (u/l) (31.6 ±8.6, P<0.001) were significantly lower as compared to control group. HbA1c percentages were also normalized (5.45±0.2, P<.001) as compared to group 2. BMI values were also improved (P=0.01) after treatment. Combined supplementation of vitamin C and chromium reduce the plasma lipid percentage, blood glucose levels and also improve the ALT and AST functions.


Subject(s)
Ascorbic Acid , Body Mass Index , Chromium , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Humans , Female , Male , Ascorbic Acid/therapeutic use , Chromium/therapeutic use , Adult , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/blood , Hyperlipidemias/drug therapy , Hyperlipidemias/blood , Lipids/blood , Liver/drug effects , Liver/enzymology , Liver/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Middle Aged
18.
Pak J Pharm Sci ; 37(1(Special)): 231-234, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747274

ABSTRACT

Increased levels of bad cholesterol in the body result in increasing blood pressure and weight gain. The rate of mortality in people, especially who are obese, is increasing due to absence of organic sources of fiber in their diets. Chia and fennel seeds are rich sources of fiber. The objective of this study was to evaluate the combined effect of Salvia hispanica (Chia seeds) and Foeniculum vulgare (Fennel seeds) against weight-loss and lipid profile in obese human subjects. The research was conducted on obese people aged 25 to 40 years at the Jinnah Hospital Lahore. The study design was randomized control trial (RCT). The sample size was calculated and was divided in-to two groups. With the duration of study being 3 months, pre-testing of all the participants was done. Group 1 was control group, given placebo treatment and Group 2 was an intervention group and given chia and fennel seeds. Post-testing was done and data were analyzed. Results showed that chia and fennel seeds have significant effect (p <0.05) on BMI and lipid profile hence, both are beneficial for lowering body weight and improving LDL, HDL, serum triglycerides and total cholesterol levels.


Subject(s)
Foeniculum , Obesity , Salvia , Seeds , Weight Loss , Humans , Foeniculum/chemistry , Adult , Obesity/blood , Obesity/drug therapy , Seeds/chemistry , Salvia/chemistry , Female , Male , Weight Loss/drug effects , Lipids/blood , Plant Extracts/pharmacology , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Body Mass Index , Phytotherapy
19.
Int J Biol Macromol ; 270(Pt 2): 132390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754657

ABSTRACT

Mimosa pudica (MP) is an ornamental plant due to seismonastic movements that close leaves and fall petioles in response to touch, wind, light, heat, cold, and vibration. The seeds of MP secrete smart, biocompatible, and non-toxic mucilage that has captivated researchers due to its widespread use in various fields such as pharmaceuticals and biotechnology. The mucilage is responsive to pH, salt solutions, and solvents and acts as a binder in tablet formulations for targeted drug delivery. The mucilage is chemically modifiable via acetylation, succinylation, and graft polymerization. Chemically modified MP mucilage appeared supersorbent for heavy metal ion uptake. Nanoparticles synthesized using mucilage as a reducing and capping agent displayed significant antimicrobial and wound-healing potential. Crosslinking of mucilage using citric acid as a crosslinking agent offers a sustained release of drugs. The present review is aimed to discuss extraction optimization, structure, modification, and the stimuli-responsive nature of mucilage. The review article will cover the potential of mucilage as emulsifying, suspending, bio-adhesive, gelling, and thickening agent. The role of mucilage as a capping and reducing agent for nanoparticles will also be discussed.


Subject(s)
Mimosa , Plant Mucilage , Seeds , Seeds/chemistry , Mimosa/chemistry , Plant Mucilage/chemistry , Nanoparticles/chemistry
20.
Int J Biol Macromol ; 270(Pt 1): 132306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740152

ABSTRACT

Combining natural polysaccharides with synthetic materials improves their functional properties which are essential for designing sustained-release drug delivery systems. In this context, the Aloe vera leaf mucilage/hydrogel (ALH) was reacted with acrylic acid (AA) to synthesize a copolymerized hydrogel, i.e., ALH-grafted-Polyacrylic acid (ALH-g-PAA) through free radical copolymerization. Concentrations of the crosslinker N,N'-methylene-bis-acrylamide (MBA), and the initiator potassium persulfate (KPS) were optimized to study their effects on ALH-g-PAA swelling. The FTIR and solid-state NMR (CP/MAS 13C NMR) spectra witnessed the formation of ALH-g-PAA. Scanning electron microscopy (SEM) analysis revealed superporous nature of ALH-g-PAA. The gel fraction (%) of ALH-g-PAA was directly related to the concentrations of AA and MBA whereas the sol fraction was inversely related to the concentrations of AA and MBA. The porosity (%) of ALH-g-PAA directly depends on the concentration of AA and MBA. The ALH-g-PAA swelled admirably at pH 7.4 and insignificantly at pH 1.2. The ALH-g-PAA offered on/off switching properties at pH 7.4/1.2. The metoprolol tartrate was loaded on different formulations of ALH-g-PAA. The ALH-g-PAA showed pH, time, and swelling-dependent release of metoprolol tartrate (MT) for 24 h following the first-order kinetic and Korsmeyer-Peppas model. Haemocompatibility studies ascertained the non-thrombogenic and non-hemolytic behavior of ALH-g-PAA.


Subject(s)
Aloe , Hydrogels , Mannans , Aloe/chemistry , Hydrogen-Ion Concentration , Mannans/chemistry , Hydrogels/chemistry , Drug Delivery Systems , Drug Liberation , Drug Carriers/chemistry , Polymers/chemistry , Porosity , Acrylic Resins/chemistry , Acrylates
SELECTION OF CITATIONS
SEARCH DETAIL
...