Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201631

ABSTRACT

Rosa davurica Pall. is widely used in traditional oriental herbal therapy, but its components and molecular mechanisms of action remain unclear. This study investigates the antidiabetic potential of Rosa davurica Pall. root extract (RDR) and elucidates its underlying molecular mechanisms with in vitro and in vivo models. Data from the current study show that RDR exhibits strong antioxidant activity and glucose homeostasis regulatory effects. It significantly impacts glucose homeostasis in C2C12 skeletal muscle cells by inhibiting α-glucosidase activity. Further molecular mechanistic studies revealed that RDR promoted glucose uptake by phosphorylation of AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC), but not Phosphatidylinositol 3-kinase (PI 3-kinase)/Akt in C2C12 skeletal muscle cells. These actions increased the expression and translocation of glucose transporter type 4 (GLUT4) to the plasma membrane. In addition, RDR treatment in the STZ-induced diabetic rats remarkably improved the low body weight, polydipsia, polyphagia, hyperglycemia, and islet architecture and increased the insulin/glucose ratio. The liver (ALT and AST) and kidney marker enzyme (BUN and creatinine) levels were restored by RDR treatment as well. Phytochemical analysis identified eight major constituents in RDR, crucial for its antioxidant and antidiabetic activity. Through the molecular docking of representative glucose transporter GLUT4 with these compounds, it was confirmed that the components of RDR had a significantly high binding score in terms of structural binding. These findings from the current study highlight the antidiabetic effects of RDR. Collectively, our data suggest that RDR might be a potential pharmaceutical natural product for diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Glucose Transporter Type 4 , Hypoglycemic Agents , Plant Extracts , Plant Roots , Rosa , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Plant Roots/chemistry , Rosa/chemistry , Rats , Glucose Transporter Type 4/metabolism , Male , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Blood Glucose/metabolism , Blood Glucose/drug effects , Cell Line , Glucose/metabolism , Molecular Docking Simulation , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , AMP-Activated Protein Kinases/metabolism
2.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069092

ABSTRACT

While fibrinolytic enzymes and thrombolytic agents offer assistance in treating cardiovascular diseases, the existing options are associated with a range of adverse effects. In our previous research, we successfully identified ficin, a naturally occurring cysteine protease that possesses unique fibrin and fibrinogenolytic enzymes, making it suitable for both preventing and treating cardiovascular disorders linked to thrombosis. Papain is a prominent cysteine protease derived from the latex of Carica papaya. The potential role of papain in preventing fibrino(geno)lytic, anticoagulant, and antithrombotic activities has not yet been investigated. Therefore, we examined how papain influences fibrinogen and the process of blood coagulation. Papain is highly stable at pH 4-11 and 37-60 °C via azocasein assay. In addition, SDS gel separation electrophoresis, zymography, and fibrin plate assays were used to determine fibrinogen and fibrinolysis activity. Papain has a molecular weight of around 37 kDa, and is highly effective in degrading fibrin, with a molecular weight of over 75 kDa. Furthermore, papain-based hemostatic performance was confirmed in blood coagulation tests, a blood clot lysis assay, and a κ-carrageenan rat tail thrombosis model, highlighting its strong efficacy in blood coagulation. Papain shows dose-dependent blood clot lysis activity, cleaves fibrinogen chains of Aα, Bß, and γ-bands, and significantly extends prothrombin time (PT) and activated partial thromboplastin time (aPTT). Moreover, the mean length of the infarcted regions in the tails of Sprague-Dawley rats with κ-carrageenan was shorter in rats administered 10 U/kg of papain than in streptokinase-treated rats. Thus, papain, a cysteine protease, has distinct fibrin and fibrinogenolytic properties, suggesting its potential for preventing or treating cardiovascular issues and thrombosis-related diseases.


Subject(s)
Carica , Cysteine Proteases , Hemostatics , Thrombosis , Rats , Animals , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Latex/chemistry , Papain , Anticoagulants , Carrageenan , Rats, Sprague-Dawley , Thrombosis/drug therapy , Fibrinogen , Fibrin/chemistry
3.
Toxicon ; 233: 107266, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37625553

ABSTRACT

Jellyfish venoms have long been recognized as a potentially rich source of natural bioactive compounds with pharmacological potential for the creation of innovative drugs. Our previous study demonstrated that Nemopilema nomurai jellyfish venom (NnV) has a chymotrypsin-like serine protease with fibrinolytic activity in vitro. Therefore, the present study aims to investigate the potential effect of NnV on cell migration, proliferation, and differentiation of vascular smooth muscle cells (VSMC; A7r5 cells) involved in the probable mechanism pathways. We also determined its anti-thrombotic effect through κ-carrageenan-induced Sprague-Dawley (SD) rat tail thrombus model. NnV inhibits on Platelet-derived growth factor (PDGF)-BB-stimulated A7r5 cells migration and proliferation by decreasing matrix metalloproteinase 2 (MMP-2) level and phosphorylation of ERK and Akt in a dose-dependent manner, but not p38. Furthermore, NnV regulates the phenotype transition of differentiation in PDGF-BB-stimulated A7r5 cells via ɑ-SMA and calponin in a dose-dependent manner. In an in vivo study, NnV treatment demonstrated clear anti-thrombotic activity in a dose-dependent manner, which was associated with decreased thrombus formation and length in κ-carrageenan-induced SD rat tail. These findings suggested that NnV has a novel fibrinolytic enzyme that can be used to prevent and/or treat thrombosis-related cardiovascular disorders.


Subject(s)
Cnidarian Venoms , Thrombosis , Rats , Animals , Rats, Sprague-Dawley , Becaplermin/pharmacology , Cnidarian Venoms/pharmacology , Carrageenan , Matrix Metalloproteinase 2 , Muscle, Smooth, Vascular , Tail , Phenotype
4.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240317

ABSTRACT

Jellyfish stings pose a major threat to swimmers and fishermen worldwide. These creatures have explosive cells containing one large secretory organelle called a nematocyst in their tentacles, which contains venom used to immobilize prey. Nemopilema nomurai, a venomous jellyfish belonging to the phylum Cnidaria, produces venom (NnV) comprising various toxins known for their lethal effects on many organisms. Of these toxins, metalloproteinases (which belong to the toxic protease family) play a significant role in local symptoms such as dermatitis and anaphylaxis, as well as systemic reactions such as blood coagulation, disseminated intravascular coagulation, tissue injury, and hemorrhage. Hence, a potential metalloproteinase inhibitor (MPI) could be a promising candidate for reducing the effects of venom toxicity. For this study, we retrieved the Nemopilema nomurai venom metalloproteinase sequence (NnV-MPs) from transcriptome data and modeled its three-dimensional structure using AlphaFold2 in a Google Colab notebook. We employed a pharmacoinformatics approach to screen 39 flavonoids and identify the most potent inhibitor against NnV-MP. Previous studies have demonstrated the efficacy of flavonoids against other animal venoms. Based on our analysis, Silymarin emerged as the top inhibitor through ADMET, docking, and molecular dynamics analyses. In silico simulations provide detailed information on the toxin and ligand binding affinity. Our results demonstrate that Silymarin's strong inhibitory effect on NnV-MP is driven by hydrophobic affinity and optimal hydrogen bonding. These findings suggest that Silymarin could serve as an effective inhibitor of NnV-MP, potentially reducing the toxicity associated with jellyfish envenomation.


Subject(s)
Cnidaria , Cnidarian Venoms , Scyphozoa , Silymarin , Toxins, Biological , Animals , Cnidarian Venoms/chemistry , Scyphozoa/chemistry , Proteins/analysis , Metalloproteases/metabolism
5.
Toxicon ; 229: 107126, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37054994

ABSTRACT

Jellyfish stings pose a significant threat to humans in coastal areas worldwide, with venomous jellyfish species stinging millions of individuals annually. Nemopilema nomurai is one of the largest jellyfish species, with numerous tentacles rich in nematocysts. N. nomurai venom (NnV) is a complex mixture of proteins, peptides, and small molecules that serve as both prey-capture and defense mechanisms. Yet, the molecular identity of its cardiorespiratory and neuronal toxic components of NnV has not been clearly identified yet. Here, we isolated a cardiotoxic fraction, NnTP (Nemopilema nomurai toxic peak), from NnV using chromatographic methods. In the zebrafish model, NnTP exhibited strong cardiorespiratory and moderate neurotoxic effects. LC-MS/MS analysis identified 23 toxin homologs, including toxic proteinases, ion channel toxins, and neurotoxins. The toxins demonstrated a synergistic effect on the zebrafish, leading to altered swimming behavior, hemorrhage in the cardiorespiratory region, and histopathological changes in organs such as the heart, gill, and brain. These findings provide valuable insights into the mechanisms underlying the cardiorespiratory and neurotoxic effects of NnV, which could be useful in developing therapeutic strategies for venomous jellyfish stings.


Subject(s)
Cnidaria , Cnidarian Venoms , Scyphozoa , Toxins, Biological , Animals , Humans , Cnidarian Venoms/toxicity , Cnidarian Venoms/chemistry , Zebrafish , Chromatography, Liquid , Tandem Mass Spectrometry
6.
Toxins (Basel) ; 14(12)2022 11 28.
Article in English | MEDLINE | ID: mdl-36548728

ABSTRACT

Jellyfish stings can result in local tissue damage and systemic pathophysiological sequelae. Despite constant occurrences of jellyfish stings in oceans throughout the world, the toxinological assessment of these jellyfish envenomations has not been adequately reported in quantitative as well as in qualitative measurements. Herein, we have examined and compared the in vivo toxic effects and pathophysiologic alterations using experimental animal models for two representative stinging jellyfish classes, i.e., Cubozoa and Scyphozoa. For this study, mice were administered with venom extracts of either Carybdea brevipedalia (Cnidaria: Cubozoa) or Nemopilema nomurai (Cnidaria: Scyphozoa). From the intraperitoneal (IP) administration study, the median lethal doses leading to the deaths of mice 24 h post-treatment after (LD50) for C. brevipedalia venom (CbV) and N. nomurai venom (NnV) were 0.905 and 4.4697 mg/kg, respectively. The acute toxicity (i.e., lethality) of CbV was much higher with a significantly accelerated time to death value compared with those of NnV. The edematogenic activity induced by CbV was considerably (83.57/25 = 3.343-fold) greater than NnV. For the evaluation of their dermal toxicities, the epidermis, dermis, subcutaneous tissues, and skeletal muscles were evaluated toxinologically/histopathologically following the intradermal administration of the venoms. The minimal hemorrhagic doses (MHD) of the venoms were found to be 55.6 and 83.4 µg/mouse for CbV and NnV, respectively. Furthermore, the CbV injection resulted in extensive alterations of mouse dermal tissues, including severe edema, and hemorrhagic/necrotic lesions, with the minimum necrotizing dose (MND) of 95.42 µg/kg body weight. The skin damaging effects of CbV appeared to be considerably greater, compared with those of NnV (MND = 177.99 µg/kg). The present results indicate that the toxicities and pathophysiologic effects of jellyfish venom extracts may vary from species to species. As predicted from the previous reports on these jellyfish envenomations, the crude venom extracts of C. brevipedalia exhibit much more potent toxicity than that of N. nomurai in the present study. These observations may contribute to our understanding of the toxicities of jellyfish venoms, as well as their mode of toxinological actions, which might be helpful for establishing the therapeutic strategies of jellyfish stings.


Subject(s)
Cnidaria , Cnidarian Venoms , Cubozoa , Scyphozoa , Animals , Mice , Cnidarian Venoms/toxicity , Skin , Hemorrhage
7.
Nutrients ; 14(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079810

ABSTRACT

Although fibrinolytic enzymes and thrombolytic agents help in cardiovascular disease treatment, those currently available have several side effects. This warrants the search for safer alternatives. Several natural cysteine protease preparations are used in traditional medicine to improve platelet aggregation and thrombosis-related diseases. Hence, this study aimed to investigate the effect of ficin, a natural cysteine protease, on fibrin(ogen) and blood coagulation. The optimal pH (pH 7) and temperature (37 °C) for proteolytic activity were determined using the azocasein method. Fibrinogen action and fibrinolytic activity were measured both electrophoretically and by the fibrin plate assay. The effect of ficin on blood coagulation was studied by conventional coagulation tests: prothrombin time (PT), activated partial thromboplastin time (aPTT), blood clot lysis assay, and the κ-carrageenan thrombosis model. The Aα, Bß, and γ bands of fibrinogen are readily cleaved by ficin, and we also observed a significant increase in PT and aPTT. Further, the mean length of the infarcted regions in the tails of Sprague-Dawley rats was shorter in rats administered 10 U/mL of ficin than in control rats. These findings suggest that natural cysteine protease, ficin contains novel fibrin and fibrinogenolytic enzymes and can be used for preventing and/or treating thrombosis-associated cardiovascular disorders.


Subject(s)
Cysteine Proteases , Thrombosis , Animals , Anticoagulants/pharmacology , Carrageenan , Cysteine Proteases/therapeutic use , Estrone/analogs & derivatives , Fibrin/therapeutic use , Fibrinogen , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Ficain , Rats , Rats, Sprague-Dawley , Thrombosis/drug therapy
8.
Toxins (Basel) ; 14(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-36006181

ABSTRACT

We previously demonstrated that Nemopilema nomurai jellyfish venom metalloproteinases (JVMPs) play a key role in the toxicities induced by N. nomurai venom (NnV), including dermotoxicity, cytotoxicity, and lethality. In this study, we identified two full-length JVMP cDNA and genomic DNA sequences: JVMP17-1 and JVMP17-2. The full-length cDNA of JVMP17-1 and 17-2 contains 1614 and 1578 nucleotides (nt) that encode 536 and 525 amino acids, respectively. Putative peptidoglycan (PG) binding, zinc-dependent metalloproteinase, and hemopexin domains were identified. BLAST analysis of JVMP17-1 showed 42, 41, 37, and 37% identity with Hydra vulgaris, Acropora digitifera, Megachile rotundata, and Apis mellifera venom metalloproteinases, respectively. JVMP17-2 shared 38 and 36% identity with H. vulgaris and A. digitifera, respectively. Alignment results of JVMP17-1 and 17-2 with other metalloproteinases suggest that the PG domain, the tissue inhibitor of metalloproteinase (TIMP)-binding surfaces, active sites, and metal (ion)-binding sites are highly conserved. The present study reports the gene cloning of metalloproteinase enzymes from jellyfish species for the first time. We hope these results can expand our knowledge of metalloproteinase components and their roles in the pathogenesis of jellyfish envenomation.


Subject(s)
Cnidaria , Cnidarian Venoms , Scyphozoa , Animals , Cloning, Molecular , Cnidaria/genetics , Cnidaria/metabolism , Cnidarian Venoms/chemistry , DNA, Complementary/genetics , Metalloproteases/chemistry
9.
Phytomedicine ; 91: 153708, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34455178

ABSTRACT

PURPOSE: Rosa davurica Pall., is mainly distributed in Korea, Japan, northeastern China, southeastern Siberia, and eastern Asia. It has been extensively used to treat various kinds of diseases by reason of the significant antioxidant, antiviral and anti-inflammatory activities. However, the pharmacological mechanism of Rosa davurica Pall. in atopic dermatitis (AD) is still ill defined and poorly understood. This study was to examine the anti-inflammatory effects and its mechanism on AD of Rosa davurica Pall. leaves (RDL). METHODS: To evaluate the therapeutic potential of RDL against AD, we have investigated the effects of RDL on the inflammatory reactions and the productions of inflammatory chemokines and cytokines that were induced by tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) in HaCaT cells. Futhermore, we examined the effects of RDL on the signaling pathways of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB). For the in-vivo studies, RDL extract was topically applied to the dinitrochlorobenzene (DNCB)-induced AD mice, then its therapeutic effect was evaluated physiologically and morphologically. RESULTS: After the stimulation of HaCaT cells with TNF-α/IFN-γ, RDL considerably reduced the release of inflammatory mediators such as nitric oxide (NO), PEG2 and other cytokines. RDL also reduced the phosphorylations of MAPK and NF-κB in TNF-α/IFN-γ-stimulated HaCaT cells. In vivo topical application of RDL to DNCB-induced AD mice significantly reduced the dorsal skin and ear thickness, clinical dermatitis severity, and mast cells. Treatment with RDL also markedly decreased the levels of serum IgE, IL-6 and the number of WBCs in the blood. CONCLUSION: Our studies indicate that RDL inhibits the AD-like skin lesions by modulating skin inflammation. Consequently, these results suggest that RDL may be served as a possible alternative therapeutic treatment for skin disorder such as AD.


Subject(s)
Dermatitis, Atopic , Plant Extracts/pharmacology , Rosa , Animals , Cytokines , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dinitrochlorobenzene , HaCaT Cells , Humans , Interferon-gamma , Mice , Mice, Inbred BALB C , NF-kappa B , Plant Leaves/chemistry , Rosa/chemistry , Skin , Tumor Necrosis Factor-alpha
10.
Data Brief ; 34: 106721, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33537367

ABSTRACT

This article reports data associated with Prakash et al. [1]. Nemopilema nomurai jellyfish venom (NnV) can lead to neurotoxicity in zebrafish (Danio rerio) model. In the present study, zebrafish were treated with NnV by intraperitoneal injection and the swimming behavior of each fish was evaluated using a score scale. The dose of NnV in each treatment group was based on the protein concentration of NnV. Swimming is the main locomotory movements in the fishes. NnV modulated the swimming behavior of Danio rerio in a dose-dependent manner. In this article provided data are directly related to the previously published research article - "Danio rerio as an alternative vertebrate model for jellyfish venom study: the toxinological aspects of Nemopilema nomurai venom" [1] where the downregulation of acetylcholinesterase activity as well as histopathological alterations were observed from the brain of Danio rerio treated with NnV. Here we provide datasets, including mortality rate table, swimming behavior graph, and videos of zebrafish after NnV envenomation.

11.
Toxicol Lett ; 335: 91-97, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33157172

ABSTRACT

Nemopilema nomurai venom (NnV) is severely toxic to many organisms. However, the mechanism of its poisoning has not been properly understood yet. The present work demonstrates that zebrafish (Danio rerio) is an alternative vertebrate model for studying NnV jellyfish venom for the first time. In this model, NnV appears to cause severe hemorrhage and inflammation in cardiopulmonary regions of zebrafish. NnV also altered the swimming behavior of zebrafish accompanied by a significant downregulation of acetylcholinesterase (AChE) activity in brain tissues. Histopathological changes observed for various organs of D. rerio caused by NnV corresponded to an increase in lactate dehydrogenase (LDH) activity in tissues. NnV also significantly altered glutathione S-transferase (GST) activity in cardiopulmonary and brain tissues of D. rerio. SDS-PAGE revealed many protein bands of NnV of various sizes after silver staining. Taken together, these results indicate that Danio rerio can be a useful alternative animal model for jellyfish venom toxicology studies. Findings of the present study also suggest that Danio rerio could be used to develop an effective treatment strategy and discover the mechanism of action of jellyfish venom envenomation.


Subject(s)
Cnidarian Venoms/toxicity , Disease Models, Animal , Hemorrhage/chemically induced , Neurotoxicity Syndromes/etiology , Scyphozoa/chemistry , Zebrafish , Animals , Biomarkers/metabolism , Body Weight/drug effects , Cnidarian Venoms/isolation & purification , Dose-Response Relationship, Drug , Heart/drug effects , Hemorrhage/metabolism , Hemorrhage/pathology , Myocardium/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Organ Size/drug effects , Organ Specificity , Respiratory System/drug effects , Respiratory System/pathology
12.
Sci Rep ; 10(1): 18644, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122740

ABSTRACT

Jellyfish stingings are currently raising serious public health concerns around the world. Hence, the search for an effective first aid reagent for the envenomation has been the goal of many investigators in the field. There have been a few previous reports of in vivo as well as in vivo studies suggesting the metalloproteinase activity of scyphozoan jellyfish venom, such as N. nomurai venom (NnV), plays a major role in the pathogenesis. These results have inspired us to develop a metalloproteinase inhibitor as a candidate for the treatment of Scyphozoan jellyfish envenomation. It has been previously demonstrated that the major polyphenol component in green tea, epigallocatechin-3-gallate (EGCG), can inhibit metalloproteinase activity of snake venoms. In fact, plant polyphenols as potential therapeutics have been shown to exert positive effects on neutralizing snake venoms and toxins. In the present study, we found that EGCG significantly inhibits the toxic proteases of NnV in a concentration-dependent manner. Human keratinocyte (HaCaT) and Human dermal fibroblast (HDF) cell culture studies showed that EGCG treatment can protect the cells from NnV-induced cytotoxicity which has been accompanied by the down-regulation of human matrix metalloproteinase (MMP)-2 and -9. Simulated rat NnV envenomation study disclosed that topical treatments with EGCG considerably ameliorated the progression of the dermonecrotic lesions caused by NnV. EGCG also reduced the activitions of tissue MMP-2 and MMP-9, which seem to be crucial players in the dermal toxic responses induced by NnV. Therefore, we propose that EGCG might be an effective therapeutic agent for the treatment of cutaneoous jellyfish symptoms.


Subject(s)
Catechin/analogs & derivatives , Cnidarian Venoms/toxicity , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Scyphozoa/chemistry , Skin Diseases/drug therapy , Animals , Catechin/therapeutic use , Cell Line , Humans
13.
Int J Mol Sci ; 21(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138302

ABSTRACT

Acne, also known as acne vulgaris, is a common disorder of human skin involving the sebaceous gland and Propionibacterium acnes (P. acnes). Although there are a number of treatments suggested for acne, many of them have limitations in their safety and have efficacy issues. Therefore, there is a high demand to develop safe and effective novel acne treatments. In the present study, we demonstrate the protective effects of Rosa davurica Pall. leaves (RDL) extract against P. acnes-induced inflammatory responses in vitro and in vivo. The results showed that RDL dose-dependently inhibited the growth of skin bacteria, including P. acnes (KCTC3314) and aerobic Staphylococcus aureus (KCTC1621) or Staphylococcus epidermidis (KCTC1917). The downregulation of proinflammatory cytokines by RDL appears to be mediated by blocking the phosphorylations of mitogen-activated protein kinase (MAPK) and subsequent nuclear factor-kappa B (NF-κB) pathways in P. acnes-stimulated HaCaT cells. In a mouse model of acne vulgaris, histopathological changes were examined in the P. acnes-induced mouse ear edema. The concomitant intradermal injection of RDL resulted in the reduction of ear swelling in mice along with microabscess but exerted no cytotoxic effects for skin cells. Instrumental analysis demonstrated there were seven major components in the RDL extract, and they seemed to have important roles in the anti-inflammatory and antimicrobial effects of RDL. Conclusively, our present work showed for the first time that RDL has anti-inflammatory and antimicrobial effects against P. acnes, suggesting RDL as a promising novel strategy for the treatment of acne, including natural additives in anti-acne cosmetics or pharmaceutical products.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Edema/immunology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/immunology , Propionibacterium acnes/pathogenicity , Rosa/chemistry , Animals , Cell Line, Tumor , Disease Models, Animal , Edema/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Propionibacterium acnes/immunology
14.
Toxins (Basel) ; 11(3)2019 03 08.
Article in English | MEDLINE | ID: mdl-30857234

ABSTRACT

Nowadays, proliferation of jellyfish has become a severe matter in many coastal areas around the world. Jellyfish Nemopilema nomurai is one of the most perilous organisms and leads to significant deleterious outcomes such as harm to the fishery, damage the coastal equipment, and moreover, its envenomation can be hazardous to the victims. Till now, the components of Nemopilema nomurai venom (NnV) are unknown owing to scant transcriptomics and genomic data. In the current research, we have explored a proteomic approach to identify NnV components and their interrelation with pathological effects caused by the jellyfish sting. Altogether, 150 proteins were identified, comprising toxins and other distinct proteins that are substantial in nematocyst genesis and nematocyte growth by employing two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI/TOF/MS). The identified toxins are phospholipase A2, phospholipase D Li Sic Tox beta IDI, a serine protease, putative Kunitz-type serine protease inhibitor, disintegrin and metalloproteinase, hemolysin, leukotoxin, three finger toxin MALT0044C, allergens, venom prothrombin activator trocarin D, tripeptide Gsp 9.1, and along with other toxin proteins. These toxins are relatively well characterized in the venoms of other poisonous species to induce pathogenesis, hemolysis, inflammation, proteolysis, blood coagulation, cytolysis, hemorrhagic activity, and type 1 hypersensitivity, suggesting that these toxins in NnV can also cause similar deleterious consequences. Our proteomic works indicate that NnV protein profile represents valuable source which leads to better understanding the clinical features of the jellyfish stings. As one of the largest jellyfish in the world, Nemopilema nomurai sting is considered to be harmful to humans due to its potent toxicity. The identification and functional characterization of its venom components have been poorly described and are beyond our knowledge. Here is the first report demonstrating the methodical overview of NnV proteomics research, providing significant information to understand the mechanism of NnV envenomation. Our proteomics findings can provide a platform for novel protein discovery and development of practical ways to deal with jellyfish stings on human beings.


Subject(s)
Cnidarian Venoms/chemistry , Animals , Cnidarian Venoms/toxicity , Phospholipases A2/chemistry , Proteins/analysis , Proteins/chemistry , Proteolysis , Proteomics , Scyphozoa
15.
Nutrients ; 11(3)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866501

ABSTRACT

Rumex japonicus Houtt. (RJ) is traditionally used in folk medicines to treat patients suffering from skin disease in Korea and other parts of East Asia. However, the beneficial effect of RJ extract on atopic dermatitis (AD) has not been thoroughly examined. Therefore, this study aimed to investigate the anti-inflammatory effects of RJ on AD in vitro and in vivo. Treatment with RJ inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) as well as the activation of nuclear factor-kappa B (NF-κB) in tumor necrosis factor-α (TNF-α) stimulated in HaCaT cells. The five-week-old Balb/c mice were used as an AD-like mouse model by treating them with 1-chloro-2, 4-dinitrobenzene (DNCB). Topical administration of RJ to DNCB-treated mice significantly reduced clinical dermatitis severity, epidermal thickness, and decreased mast cell and eosinophil infiltration into skin and ear tissue. These results suggest that RJ inhibits the development of AD-like skin lesions by regulating the skin inflammation responses in HaCaT cells and Balb/c mice. Thus, RJ may be a potential therapeutic agent for AD.


Subject(s)
Dermatitis, Atopic , Keratinocytes , Plant Extracts/pharmacology , Protective Agents/pharmacology , Rumex , Animals , Cell Line , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/adverse effects , Disease Models, Animal , Female , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Skin/drug effects , Tumor Necrosis Factor-alpha/metabolism
16.
Proteomics ; 8(17): 3577-87, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18686304

ABSTRACT

The phytohormones gibberellic acid (GA) and abscisic acid (ABA) play essential and often antagonistic roles in regulating plant growth, development, and stress responses. Using a proteomics-based approach, we examined the role of GA and ABA in the modulation of protein expression levels during seed germination. Rice seeds were treated with GA (200 microM), ABA (10 microM), ABA followed by GA, GA followed by ABA, and water as a control and then incubated for 3 days. The embryo was dissected from germinated seeds, and proteins were subjected to 2-DE. Approximately, 665 total protein spots were resolved in the 2-D gels. Among them, 16 proteins notably modulated by either GA or ABA were identified by MALDI-TOF MS. Northern analyses demonstrated that expression patterns of 13 of these 16 genes were consistent with those of the proteome analysis. Further examination of two proteins, rice isoflavone resuctase (OsIFR) and rice PR10 (OsPR10), using Western blot and immunolocalization, revealed that both are specifically expressed in the embryo but not in the endosperm and are dramatically downregulated by ABA.


Subject(s)
Abscisic Acid/pharmacology , Gibberellins/pharmacology , Oryza/embryology , Plant Proteins/drug effects , Plant Proteins/metabolism , Proteome/drug effects , Seeds/drug effects , Blotting, Northern , Blotting, Western , Gene Expression Regulation, Plant/drug effects , Germination/physiology , Oryza/drug effects , Seeds/physiology
17.
Mol Cells ; 23(2): 207-14, 2007 Apr 30.
Article in English | MEDLINE | ID: mdl-17464198

ABSTRACT

Plant beta-1, 3-glucanases are involved in plant defense and in development. Very little data are available on the expression of rice glucanases both in developmental tissues and under various stresses. In this study, we cloned and characterized twenty-seven rice beta-1, 3-glucanases (OsGlu) from at total of 71 putative glucanases. The OsGlu genes were obtained by PCR from a cDNA library and were classified into seven groups (Group I to VII) according to their DNA or amino acid sequence homology. Analysis of the expression of the twenty-seven OsGlu genes by Northern blotting revealed that they were differentially expressed in different developmental tissues as well as in response to plant hormones, biotic stress, high salt etc. OsGlu11 and 27 in Group IV were clearly expressed only in stem and leaf and were also induced strongly by SA (5 mM), ABA (200 microM), and M. grisea. OsGlu1, 10, 11, and 14 were induced earlier and to higher levels in incompatible M. grisea interaction than in compatible one. Taken together, our findings suggest that the twenty-seven rice OsGlu gene products play diverse roles not only in plant defense but also in hormonal responses and in development.


Subject(s)
Gene Expression Regulation, Plant/physiology , Genes, Plant , Glucan 1,3-beta-Glucosidase/metabolism , Oryza/genetics , Phylogeny , Abscisic Acid/pharmacology , Amino Acid Sequence , Gene Expression Regulation, Plant/drug effects , Gene Library , Glucan 1,3-beta-Glucosidase/genetics , Magnaporthe/metabolism , Molecular Sequence Data , Oryza/metabolism , Oryza/microbiology , Osmotic Pressure , Plant Growth Regulators/pharmacology , Plant Leaves/metabolism , Plant Stems/metabolism , Salicylic Acid/pharmacology , Salts
18.
Proteomics ; 4(11): 3569-78, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15478215

ABSTRACT

Proteomic approaches using two-dimensional gel electrophoresis (2-DE) were adopted to identify proteins from rice leaf that are differentially expressed in response to the rice blast fungus, Magnaporthe grisea. Microscopic observation of inoculated leaf with M. grisea revealed that callose deposition and hypersensitive response was clearly visible in incompatible interactions but excessive invading hypha with branches were evident in compatible interactions. Proteins were extracted from leaves 24, 48, and 72 hours after rice blast fungus inoculation. Eight proteins resolved on the 2-DE gels were induced or increased in the inoculated leaf. Matrix-assisted laser desorption/ionization-time of flight analysis of these differentially displayed proteins showed them to be two receptor-like protein kinases (RLK), two beta-1.3-glucanases (Glu1, Glu2), thaumatin-like protein (TLP), peroxidase (POX 22.3), probenazole-inducible protein (PBZ1), and rice pathogenesis-related 10 (OsPR-10). Of these proteins, RLK, TLP, PBZ, and OsPR-10 proteins were induced more in the incompatible interactions than in compatible ones. A phytohormone, jasmonic acid also induced all eight proteins in leaves. To confirm whether the expression profile is equal to the 2-DE data, seven cDNA clones were used as probes in Northern hybridization experiments using total RNA from leaf tissues inoculated with incompatible and compatible rice blast fungal races. The genes encoding POX22.3, Glu1, Glu2, TLP, OsRLK, PBZ1, and OsPR-10 were activated in inoculated leaves, with TLP, OsRLK, PBZ1, and OsPR-10 being expressed earlier and more in incompatible than in compatible interactions. These results suggest that early and high induction of these genes may provide host plants with leading edges to defend themselves. The localization of two rice PR-10 proteins, PBZ1 and OsPR-10, was further examined by immunohistochemical analysis. PBZ1 accumulated highly in mesophyll cells under the attachment site of the appressorium. In contrast, OsPR-10 expression was mainly localized to vascular tissue.


Subject(s)
Magnaporthe/metabolism , Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Blotting, Northern , Electrophoresis, Gel, Two-Dimensional , Immunohistochemistry , Oryza/microbiology , Phenotype , Plant Growth Regulators/metabolism , Proteome/metabolism
19.
Proteomics ; 4(11): 3579-87, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15378734

ABSTRACT

We used two-dimensional gel electrophoresis (2-DE) to identify the proteins that are induced in the rice blast fungus Magnaporthe grisea during appressorium formation. Proteins were extracted from conidia that had germinated on hydrophilic glass plates or from germinated and appressoria-forming conidia on leaf wax-coated hydrophobic glass plates after 4, 8, and 12 h of incubation. Differentially expressed protein spots during appressorium formation were confirmed from gels after 2-DE analysis where proteins had been labeled with (35)S methionine and stained with silver. Internal amino acid sequencing identified five proteins among several proteins induced during appressorium formation. Two denoted as M. grisea proteasome homolgues (MgP1 and MgP5) were 20S proteasome alpha subunits. The remaining three were scytalone dehydratase (SCD), and serine carboxypeptidase Y (CPY). None of the five have been reported previously in the rice blast fungus apart from SCD. We further investigated the role the alpha subunit of 20S proteasome plays in appressorium formation. We confirmed by Western blot analysis that MgP5 is highly expressed during appressorium formation and found that it is also markedly induced by nitrogen- and carbon-starvation, in particular by the former. These observations suggest that the 20S proteasome may be involved in remobilizing storage proteins, which then help to build the appressorium. Thus, fungal proteome analysis may provide important clues about developmental changes such as the generation of the appressorium.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/metabolism , Proteome/metabolism , Amino Acid Sequence , Blotting, Western , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Magnaporthe/growth & development , Molecular Sequence Data , Phylogeny , Time Factors
20.
Plant Cell Rep ; 23(4): 256-62, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15278420

ABSTRACT

Phytohormones are essential signal compounds in the regulation of stress-related and defense-related genes. However, there is no clear evidence for any effect of these signal molecules and biotic elicitors on the regulation of the SALT gene in suspension-cultured rice cells. We characterized the expression of a SALT gene following treatment with fungal elicitor, phytohormones, cycloheximide, and inhibitors of protein kinase/phosphatases. SALT expression was up-regulated following treatment with a fungal elicitor, jasmonic acid (JA), abscisic acid (ABA), and NaCl. However, salicylic acid (SA) alone or in combination with one of the other elicitors not only strongly inhibited SALT gene expression but also exhibited an antagonistic effect in suspension cells and leaves. Cycloheximide inhibited SALT accumulation in suspension cells and in leaves, but the inhibitors of protein kinase/phosphatase did not. Immunolocalization revealed that SALT protein was present in xylem parenchyma cells of vascular bundles in the major and minor leaf veins.


Subject(s)
Oryza/drug effects , Oryza/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Abscisic Acid/pharmacology , Cells, Cultured , Cycloheximide/pharmacology , Cyclopentanes/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Genetic Markers/drug effects , Genetic Markers/genetics , Oryza/cytology , Oxylipins , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Protein Kinases/drug effects , Protein Kinases/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Salicylic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL