Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891403

ABSTRACT

In this work, comb homopolymers as well as comb-type copolymers of thermo-responsive oligo(ethylene glycol methyl ether methacrylate)s, OEGMAs, with various chain lengths (DEGMA, PEGMA500, and PEGMA950 containing 2, 9, or 19 repeating ethylene glycol units, respectively) were synthesized through free radical (co)polymerization. For the copolymers, either the functional hydrophobic glycidyl methacrylate (GMA) or the inert hydrophilic N,N-dimethylacrylamide (DMAM) were selected as comonomers. The self-assembly and thermo-responsive behavior of the products was investigated through Nile Red fluorescence probing, turbidimetry, and dynamic light scattering (DLS). Interestingly, it was found that all OEGMA-based homopolymers exhibit a tendency to self-organize in aqueous media, in addition to thermo-responsiveness. The critical aggregation concentration (CAC) increases with the number of repeating ethylene oxide units in the OEGMA macromonomers (CAC was found to be 0.003, 0.01, and 0.03% w/v for the homopolymers PDEGMA, PPEGMA500, and PPEGMA950, respectively). Moreover, the CAC of the copolymers in aqueous media is highly affected by the incorporation of hydrophobic GMA or hydrophilic DMAM units, leading to lower or higher values, respectively. Thus, the CAC decreases down to 0.003% w/v for the GMA-richest copolymer of PEGMA950, whereas CAC increases up to 0.01% w/v for the DMAM-richest copolymer of DEGMA. Turbidimetry and DLS studies proved that the thermo-sensitivity of the polymers is governed by several parameters such as the number of repeating ethylene glycol groups in the side chains of the OEGMAs, the molar percentage of the hydrophobic or hydrophilic comonomers, along with the addition of salts in the aqueous polymer solutions. Thus, the cloud point of the homopolymer PDEGMA was found at 23 °C and it increases to 33.5 °C for the DMAM-richest copolymer of DEGMA. Lastly, the formation of a hydrogel upon heating aqueous mixtures of the GMA-comprising copolymers with silica nanoparticles overnight is strong evidence of the functional character of these polymers.

2.
Polymers (Basel) ; 16(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611144

ABSTRACT

A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-responsive side chains, the copolymer forms hydrogels with a thermo-induced sol-gel transition, above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect was more pronounced in low temperatures (below Tgel), suggesting secondary physical crosslinking, which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol-gel transition to soft gel-strong gel. Moreover, the onset of thermo-thickening shifted to lower temperatures followed by the broadening of the transition zone, implying intermolecular interactions between the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows potential applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles, was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system might be useful for biomedical potential applications.

3.
Gels ; 9(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36975684

ABSTRACT

Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative method to tune Tgel using an alginate-based thermo-responsive gelator bearing two kinds of grafting chains (heterograft copolymer topology) of P(NIPAM86-co-NtBAM14) random copolymers and pure PNIPAM, differing in their lower critical solution temperature (LCST) about 10 °C. Interestingly, the Tgel of the heterograft copolymer is controlled from the overall hydrophobic content, NtBAM, of both grafts, implying the formation of blended side chains in the crosslinked nanodomains of the formed network. Rheological investigation of the hydrogel showed excellent responsiveness to temperature and shear. Thus, a combination of shear-thinning and thermo-thickening effects provides the hydrogel with injectability and self-healing properties, making it a good candidate for biomedical applications.

4.
Int J Mol Sci ; 24(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36768898

ABSTRACT

The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing hydrophobic glycidyl methacrylate were synthesized and studied as potential self-healing agents of waterborne polyurethanes (WPU). The molar percentage of DMAM or GMA units in the P(HEMA-co-DMAMy) and P(HEMA-co-GMAy) copolymers varies from 0% up to 80%. WPU/polymer composites with a 10% w/w or 20% w/w copolymer content were prepared with the facile method of solution mixing. Thanks to the presence of P(HEMA-co-DMAMy) copolymers, WPU/P(HEMA-co-DMAMy) composite films exhibited surface hydrophilicity (water contact angle studies), and tendency for water uptake (water sorption kinetics studies). In contrast, the surfaces of the WPU/P(HEMA-co-GMAy) composites were less hydrophilic compared with the WPU/P(HEMA-co-DMAMy) ones. The room-temperature, water-mediated self-healing ability of these composites was investigated through addition of water drops on the damaged area. Both copolymer series exhibited healing abilities, with the hydrophilic P(HEMA-co-DMAMy) copolymers being more promising. This green healing procedure, in combination with the simple film fabrication process and simple healing triggering, makes these materials attractive for practical applications.


Subject(s)
Polymers , Polyurethanes , Polymers/chemistry , Temperature , Water/chemistry
5.
Int J Mol Sci ; 23(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897694

ABSTRACT

Self-healing materials and self-healing mechanisms are two topics that have attracted huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately tailored functional polymers with desired healing properties. Herein, we report the incorporation of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the study of their potential healing ability. Two types of copolymers were synthesized, namely the hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition. The healing efficiency of these copolymers was explored upon application of two external triggers (addition of water or heating). Promising healing results were exhibited by the final composites when water was used as a healing trigger.


Subject(s)
Methacrylates , Polyurethanes , Epoxy Compounds , Methacrylates/chemistry , Polymers/chemistry , Water/chemistry
6.
Polymers (Basel) ; 13(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920243

ABSTRACT

We report the preparation of mesoporous silica nanoparticles covered by layer by layer (LbL) oppositely charged weak polyelectrolytes, comprising poly(allylamine hydrochloride) (PAH) and a sodium alginate, highly grafted by N-isopropylacrylamide/N-tert-butylacrylamide random copolymers, NaALG-g-P(NIPAM90-co-NtBAM10) (NaALG-g). Thanks to the pH dependence of the degree of ionization of the polyelectrolytes and the LCST-type thermosensitivity of the grafting chains of the NaALG-g, the as-prepared hybrid nanoparticles (hNP) exhibit pH/thermo-responsive drug delivery capabilities. The release kinetics of rhodamine B (RB, model drug) can be controlled by the number of PAH/NaALG-g bilayers and more importantly by the environmental conditions, namely, pH and temperature. As observed, the increase of pH and/or temperature accelerates the RB release under sink conditions. The same NaALG-g was used as gelator to fabricate a hNP@NaALG-g hydrogel composite. This formulation forms a viscous solution at room temperature, and it is transformed to a self-assembling hydrogel (sol-gel transition) upon heating at physiological temperature provided that its Tgel was regulated at 30.7 °C, by the NtBAM hydrophobic monomer incorporation in the side chains. It exhibits excellent injectability thanks to its combined thermo- and shear-responsiveness. The hNP@NaALG-g hydrogel composite, encapsulating hNP covered with one bilayer, exhibited pH-responsive sustainable drug delivery. The presented highly tunable drug delivery system (DDS) (hNP and/or composite hydrogel) might be useful for biomedical potential applications.

7.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917134

ABSTRACT

Graft copolymers of alginate backbone and N-isopropylacrylamide/N-tert-butylacrylamide random copolymer, P(NIPAMx-co-NtBAMy), side chains (stickers) with various NtBAM content were designed and explored in aqueous media. Self-assembling thermoresponsive hydrogels are formed upon heating, in all cases, through the hydrophobic association of the P(NIPAMx-co-NtBAMy) sticky pendant chains. The rheological properties of the formulations depend remarkably on the NtBAM hydrophobic content, which regulates the lower critical solution temperature (LCST) and, in turn, the stickers' thermo-responsiveness. The gelation point, Tgel, was shifted to lower temperatures from 38 to 20 °C by enriching the PNIPAM chains with 20 mol % NtBAM, shifting accordingly to the gelation temperature window. The consequences of the Tgel shift to the hydrogels' rheological properties are significant at room and body temperature. For instance, at 37 °C, the storage modulus increases about two orders of magnitude and the terminal relaxation time increase about 10 orders of magnitude by enriching the stickers with 20 mol % hydrophobic moieties. Two main thermo-induced behaviors were revealed, characterized by a sol-gel and a weak gel-stiff gel transition for the copolymer with stickers of low (0.6 mol %) and high (14, 20 mol %) NtBAM content, respectively. The first type of hydrogels is easily injectable, while for the second one, the injectability is provided by shear-thinning effects. The influence of the type of media (phosphate buffer (PB), phosphate-buffered saline (PBS), Dulbecco's modified Eagle's medium (DMEM)) on the hydrogel properties was also explored and discussed. The 4 wt % NaALG-g-P(NIPAM80-co-NtBAM20)/DMEM formulation showed excellent shear-induced injectability at room temperature and instantaneous thermo-induced gel stiffening at body temperature, rendering it a good candidate for cell transplantation potential applications.


Subject(s)
Acrylamides/chemistry , Alginates/chemistry , Biopolymers/chemistry , Hydrogels/chemistry , Chemical Phenomena , Chemistry Techniques, Synthetic , Magnetic Resonance Spectroscopy , Rheology , Temperature
9.
Carbohydr Polym ; 219: 344-352, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31151534

ABSTRACT

Sodium alginate grafted by a thermo-responsive copolymer of N-isopropylacrylamide, enriched with the hydrophobic N-tert-butylacrylamide monomer, (P(NIPAM-co-NtBAM)-NH2) was synthesized and its thermo- and shear-induced responsive capabilities were studied through rheology. The graft copolymer formed a 3D network through thermo-induced hydrophobic association of the thermo-responsive P(NIPAM-co-NtBAM) side chains in water. By applying the frequency-temperature superposition principle, the terminal relaxation time, τ and the shear viscosity, as a function of temperature were evaluated. Both parameters increased exponentially upon heating orders of magnitude, 15 °C above the onset of gelation (35 °C). It is shown that the thermo-induced thickening effect was mainly due to the slowdown of the P(NIPAM90-co-NtBAM10) associative side chains exchange dynamics. Moreover, combination of shear- and thermo-responsiveness provided excellent hydrogel injectability with instantaneous gelation at physiological temperature. The better insight of the thermo-thickening mechanism through oscillatory rheology allows precise tuning of the carbohydrate-based hydrogel properties towards potential bioapplications.

10.
Polymers (Basel) ; 12(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906238

ABSTRACT

Poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) linear diblock copolymer and polystyrene-poly(ethylene oxide) (PS10PEO10) heteroarm star copolymer were used as building elements to prepare organic-inorganic hybrids. By using the layer-by-layer (LbL) methodology, these elements were integrated on mesoporous silica through non-covalent interactions, namely, ionic and H-bonding. For the latter, tannic acid (TA) was used as an intermediate layer. The deposition of the various layers was monitored by thermogravimetric analysis (TGA), electrophoretic measurements, and confocal microscopy. The final silica hybrid, bearing alternating P2VP-b-PEO and PS10PEO10 star layers was capable of carrying one hydrophilic and two hydrophobic chemical species in distinct compartments. These multicompartmental organic-inorganic hybrids could be used as nanostructured carriers for pH-responsive multiple drug delivery and potential theranostic applications.

11.
ACS Omega ; 3(9): 11896-11908, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30320280

ABSTRACT

We report the fabrication of polymersomes, using as building blocks star-graft quarterpolymers, composed of hydrophobic polystyrene and pH-sensitive poly(2-vinylpyridine)-b-poly(acrylic acid) (P2VP-b-PAA) arms, emanated from a common nodule, enriched by thermosensitive poly(N-isopropylacrylamide) grafts covalently bonded on the PAA block-arms. These multicompartmental polymersomes were evaluated as nanocarriers for the encapsulation and controlled co-delivery of doxorubicin (hydrophilic) and paclitaxel (hydrophobic) chemotherapeutic agents. The polymersomes can load these drugs in different compartments and can efficiently be internalized in the human lung adenocarcinoma epithelial cells, delivering their cargo and inducing high cell apoptosis. The release kinetics of both anticancer agents was controlled differently by the environmental conditions (pH and temperature). Enhanced release was observed at the acidic pH 6.0 and under physiological temperature (37 °C). At the same total drug level, co-delivery of these drugs with the polymersomes caused enhanced cytotoxicity and induced significantly higher cell apoptosis in the cancer cell line compared to the polymersomes loaded with either of the two drugs.

12.
ACS Appl Mater Interfaces ; 8(51): 35059-35070, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27966875

ABSTRACT

Adequately designed multiresponsive water-soluble graft copolymers were used to serve as a multifunctional polymeric platform for the encapsulation and transfer in aqueous media of hydrophobic magnetic nanoparticles (MNPs). The backbone of the graft copolymers was composed of hydrophilic sodium methacrylate units, hydrophobic dodecyl methacrylate units, and luminescent quinoline-based units, while either the homopolymer poly(N-isopropylacrylamide) or a poly(N,N-dimethylacrylamide-co-N-isopropylacrylamide) copolymer was used as thermosensitive pendent side chains. The polymeric platform forms micellar-type assemblies in aqueous solution, and exhibits pH-responsive luminescent properties and a lower critical solution temperature behavior in water. Depending on the design of the side chains, the cloud point temperatures were determined at 38 and 42 °C, close or slightly above body temperature (37 °C). Above the critical micelle concentration (CMC), both graft copolymers can effectively stabilize in aqueous media as magnetic colloidal superparticles (MSPs), oleylamine-coated MnFe2O4 MNPs, as well as 1:1 mixture of oleylamine-coated MnFe2O4 and CoFe2O4 MNPs. When CoFe2O4 particles were mixed with MnFeO4 in equal amounts, the specific loss power increased significantly, while an opposite trend was observed in the magnetic resonance imaging (MRI) studies, probably due to the anisotropy of cobalt. As a consequence, fine-tuning of the chemical structure of the copolymers and the composition of the MSPs can lead to materials that are able to act simultaneously as luminescent, hyperthermia, and contrast MRI agents.


Subject(s)
Ferric Compounds/chemistry , Hyperthermia, Induced , Luminescence , Magnetic Resonance Spectroscopy , Micelles , Polymers , Temperature
13.
Angew Chem Int Ed Engl ; 55(16): 4908-13, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26990494

ABSTRACT

Multicompartmental responsive microstructures with the capability for the pre-programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual-responsive blocks (temperature for poly(N-isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2-vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water-soluble hydrophilic macromolecules. For these dual-loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out-of-shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out-of-core release (pH). Reversing stimulus order completely alters the release process.

14.
Dalton Trans ; 44(24): 10980-90, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25986081

ABSTRACT

The ability to encapsulate hydrophobic ferrites in colloidal superparticle structures of an a-telechelic hexadecyl-functionalized poly(methacrylic acid) (C16H33-PMAA) polymer with a linear architecture was investigated and compared with that of two amphiphilic comb-type water-soluble copolymers, namely, P(ANa-co-DAAm) and P(MANa-co-DMA), which are comprised of a poly(sodium acrylate) or poly(sodium methacrylate) backbone and pendent dodecyl acrylamide or dodecyl methacrylate chains, respectively. In the case of C16H33-PMAA, the pH-sensitive self-assembly behavior, which was studied through Nile Red probing and TEM, was related to its encapsulation properties. Hydrophobic MFe2O4 nanoparticles coated with oleylamine (MFe2O4@OAm MNPs, where M = Co, Mn, Ni) with a similar shape and size (∼9 nm) and magnetization values of 87.4, 63.1 and 55.0 emu g(-1) for CoFe2O4@OAm, MnFe2O4@OAm and NiFe2O4@OAm, respectively, were successfully encapsulated into the hydrophobic cores of spherical micellar structures formed by the copolymers in an aqueous solution through a solvent mixing procedure. The synthesized magnetic colloidal superparticles fell in the static dephasing regime (SDR). NMR relaxivity measurements of MFe2O4@P(ANa-co-DAAm), MFe2O4@P(MANa-co-DMA) and MFe2O4@C16H33-PMAA at pH = 4.5 and pH = 7 (where M = Co, Mn, Ni) at 11.7 T were recorded and the transverse relaxivity (r2) (mM(-1) s(-1)) was determined. Among all, the CoFe2O4@polymers demonstrated the highest r2 relaxivity values, ranging from 61.6 for CoFe2O4@C16H33-PMAA (pH = 7) to 316.0 mM(-1) s(-1) for CoFe2O4@P(ANa-co-DAAm). The relaxation efficiency (r1 and r2) of CoFe2O4@P(ANa-co-DAAm) was investigated further by magnetic resonance imaging (MRI) at 1.5 T and 3 T and the r2/r1 ratios were found to be 16.5 and 18.2, respectively, indicating its potential use as a T2 contrast agent.


Subject(s)
Cobalt/chemistry , Colloids/chemistry , Contrast Media/chemistry , Ferric Compounds/chemistry , Manganese/chemistry , Methacrylates/chemistry , Nickel/chemistry , Surface-Active Agents/chemistry , Acrylic Resins/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Polymethacrylic Acids/chemistry
15.
ACS Appl Mater Interfaces ; 7(23): 12411-21, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25634906

ABSTRACT

We report the rheological and structural properties of a suspension comprising poly(ethylene oxide)-polystyrene-poly(ethylene oxide) core-shell micellar nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. A liquid to soft solid transition was observed at a copolymer concentration of 10 wt % above which an elastic soft material was formed, which was composed of non-ordered jammed core-shell micellar nanoparticles. In the soft solid state, a significant reduction in the size of the nanoparticles, approaching hard sphere behavior, was observed by small-angle X-ray scattering which is attributed to compression of the soft poly(ethylene oxide) coronas. The nonvolatile ionic liquid-based glassy soft solid formed exhibited remarkable thermal stability with a melting temperature of 141 °C at 20 wt % copolymer, which renders it suitable for applications involving elevated temperatures and/or reduced pressure where water-based formulations are inappropriate.

16.
J Colloid Interface Sci ; 430: 293-301, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24973703

ABSTRACT

The behavior in aqueous solution of the doubly-grafted anionic polyelectrolyte poly(sodium 2-acrylamido-2-methylpropanesulfonate-co-sodium acrylate-)-g-poly(N-isopropylacry-lamide)-g-poly(N,N-dimethylacrylamide), P(AMPSNa-co-ANa)-g-PNIPAM-g-PDMAM, was compared to that of the single-grafted anionic polyelectrolyte poly(sodium 2-acrylamido-2-methylpropanesulfonate-co-sodium acrylate)-g-poly(N-isopropylacrylamide), P(AMPSNa-co-ANa)-g-PNIPAM. The investigation through turbidimetry, pyrene fluorescence probing, viscometry and dynamic light scattering revealed that the existence of the hydrophilic poly(N,N-dimethylacrylamide), PDMAM, side chains in the doubly-grafted copolymer P(AMPSNa-co-ANa)-g-PNIPAM-g-PDMAM did not perturb the thermoresponsiveness of the poly(N-isopropylacrylamide), PNIPAM, side chains, but favoured the stabilization in water of the core-corona nanoparticles, formed upon heating the aqueous solution above the Lower Critical Solution Temperature (LCST) of PNIPAM chains. In a similar manner, the complexes formed between the cationic surfactant N,N,N,N-dodecyltrimethylammonium chloride, DTAC, and the oppositely charged backbone of the doubly-grafted copolymer P(AMPSNa-co-ANa)-g-PNIPAM-g-PDMAM were stabilized in water by the PDMAM side chains. Thus, phase separation was prevented upon heating the aqueous solution above LCST. Moreover, the (1)H NMR study revealed that the fraction of PNIPAM chains forming solid-like aggregates at high temperature increased substantially in the presence of DTAC, as a consequence of the net charge decrease of the backbone due to the polymer/DTAC complexation.

17.
Dalton Trans ; 43(23): 8633-43, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24759871

ABSTRACT

Hydrophobically modified water-soluble polymers (HMWSPs), comprised of a poly(sodium methacrylate) (PMANa) or poly(sodium acrylate) (PANa) backbone and pendent dodecyl methacrylate (DMA) or dodecyl acrylamide (DAAm) chains, respectively, were synthesized. The hydrophobic content of the copolymers, P(MANa-co-DMA) and P(ANa-co-DAAm), is in the range of 0 to 25 mol%, while their weight-average molar mass varies from ~10 000 up to ~75 000. Their self-assembly behavior in dilute aqueous solution was followed through Nile Red probing, DLS and TEM measurements. The critical micelle concentration (CMC) is mainly controlled by the hydrophobic content and not the molar mass of the copolymers. Above CMC, spherical and large-compound micelles are identified by DLS and TEM. Moreover, oleylamine coated CoFe2O4 nanoparticles (CoFe2O4@OAm MNPs) of 9.4 nm with a saturation magnetization Ms = 85 emu g(-1) were solvothermally prepared. The hydrophobic CoFe2O4@OAm MNPs were successfully encapsulated into the hydrophobic cores of the structures formed by the copolymers above CMC through a solvent mixing procedure, and in that way hydrophilic CoFe2O4@HMWSP nanohybrids resulted. For comparison purposes, two alternate phase transfer approaches were also used to convert CoFe2O4@OAm MNPs to hydrophilic ones: (a) addition of a coating layer by cetyltrimethyl ammonium bromide (CTAB) and (b) by the ligand exchange procedure with 2,3-dimercaptosuccinic acid (DMSA). NMR transverse relaxivity measurements of the aqueous suspensions of CoFe2O4@P(ANa-co-DAAm), CoFe2O4@CTAB and CoFe2O4@DMSA were recorded and the r2 relaxivity was determined. CoFe2O4@CTAB demonstrated the highest r2 relaxivity of 554.0 mM(-1) s(-1), while CoFe2O4@P(ANa-co-DAAm) and CoFe2O4@DMSA showed lower values of 313.6 mM(-1) s(-1) and 76.3 mM(-1) s(-1), respectively.


Subject(s)
Acrylic Resins/chemistry , Magnetite Nanoparticles/chemistry , Polymethacrylic Acids/chemistry , Water/chemistry , Acrylic Resins/chemical synthesis , Cobalt/chemistry , Hydrophobic and Hydrophilic Interactions , Iron/chemistry , Particle Size , Polymethacrylic Acids/chemical synthesis , Solubility , Surface Properties
18.
Chem Commun (Camb) ; 47(19): 5560-2, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21461436

ABSTRACT

We report on the association capability of a novel multisegmented, multiarm star terpolymer to form a diversity of pH-responsive amphoteric micellar nanostructured self-assemblies.


Subject(s)
Polymers/chemistry , Electrons , Hydrogen-Ion Concentration , Micelles , Models, Molecular , Molecular Conformation , Nanostructures/chemistry , Water/chemistry
19.
Langmuir ; 25(13): 7695-703, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19348496

ABSTRACT

The preparation of temperature-sensitive water-soluble hybrid organic/inorganic nanoparticles, exploiting the complexation of Cu2+ ions with PANa-g-PNIPAMx comb-type copolymers, is presented. These copolymers consist of a Cu2+-complexing poly(sodium acrylate) backbone, PANa, and thermosensitive poly(N-isopropylacrylamide), PNIPAM, side chains. UV-vis spectrophotometry verified that the polymer/Cu2+ complexation follows a charge neutralization process, while turbidimetry revealed that the complexes formed can indeed be stabilized in water, provided that copolymers with a sufficiently high PNIPAM content (x approximately 80 mol % in monomer units) are used. Dilute solution viscometry and dynamic light scattering indicated that the hydrodynamic dimensions of the hybrid polymer/Cu2+ nanoparticles decrease substantially upon heating, reflecting the lower critical solution temperature behavior of the PNIPAM side chains. However, when the net negative charge of the hybrid polymer/Cu2+ nanoparticles decreases, interparticle aggregation and, eventually, phase separation may take place. In semidilute aqueous solution, the complexation of the polymer backbone with Cu2+ ions effectively controls the thermothickening properties of the thermosensitive comb-type PANa-g-PNIPAM copolymers. Finally, the temperature-induced formation of a compartmentalized hydrophilic-hydrophobic nanocontainer, where the hydrophilic and the hydrophobic compartments can be loaded with Cu2+ ions and hydrophobic substances, respectively, was evidenced through pyrene fluorescence probing.

SELECTION OF CITATIONS
SEARCH DETAIL