Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 314: 121316, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36565814

ABSTRACT

AIMS: Traumatic brain injury (TBI) constitutes a serious public health concern. Although TBI targets the brain, it can exert several systemic effects which can worsen the complications observed in TBI subjects. Currently, there is no FDA-approved therapy available for its treatment. Thus, there has been an increasing need to understand other factors that could modulate TBI outcomes. Among the factors involved are diet and lifestyle. High-fat diets (HFD), rich in saturated fat, have been associated with adverse effects on brain health. MAIN METHODS: To study this phenomenon, an experimental mouse model of open head injury, induced by the controlled cortical impact was used along with high-fat feeding to evaluate the impact of HFD on brain injury outcomes. Mice were fed HFD for a period of two months where several neurological, behavioral, and molecular outcomes were assessed to investigate the impact on chronic consequences of the injury 30 days post-TBI. KEY FINDINGS: Two months of HFD feeding, together with TBI, led to a notable metabolic, neurological, and behavioral impairment. HFD was associated with increased blood glucose and fat-to-lean ratio. Spatial learning and memory, as well as motor coordination, were all significantly impaired. Notably, HFD aggravated neuroinflammation, oxidative stress, and neurodegeneration. Also, cell proliferation post-TBI was repressed by HFD, which was accompanied by an increased lesion volume. SIGNIFICANCE: Our research indicated that chronic HFD feeding can worsen functional outcomes, predispose to neurodegeneration, and decrease brain recovery post-TBI. This sheds light on the clinical impact of HFD on TBI pathophysiology and rehabilitation as well.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Mice , Animals , Diet, High-Fat/adverse effects , Brain Injuries, Traumatic/complications , Brain/metabolism , Brain Injuries/complications , Mice, Inbred C57BL
2.
Nutr Rev ; 80(8): 1927-1941, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35172003

ABSTRACT

The prevalence of obesity tripled worldwide between 1975 and 2016, and it is projected that half of the US population will be overweight by 2030. The obesity pandemic is attributed, in part, to the increasing consumption of the high-fat, high-carbohydrate Western diet, which predisposes to the development of the metabolic syndrome and correlates with decreased cognitive performance. In contrast, the high-fat, low-carbohydrate ketogenic diet has potential therapeutic roles and has been used to manage intractable seizures since the early 1920s. The brain accounts for 25% of total body glucose metabolism and, as a result, is especially susceptible to changes in the types of nutrients consumed. Here, we discuss the principles of brain metabolism with a focus on the distinct effects of the Western and ketogenic diets on the progression of neurological diseases such as epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury, highlighting the need to further explore the potential therapeutic effects of the ketogenic diet and the importance of standardizing dietary formulations to assure the reproducibility of clinical trials.


Subject(s)
Diet, Ketogenic , Epilepsy , Carbohydrates , Humans , Obesity , Reproducibility of Results
3.
Curr Neuropharmacol ; 20(11): 2050-2065, 2022.
Article in English | MEDLINE | ID: mdl-34856905

ABSTRACT

Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Central Nervous System Diseases , Humans , Microglia/metabolism , Neurons/metabolism , Brain Injuries, Traumatic/metabolism , Brain/pathology , Brain Injuries/metabolism , Central Nervous System Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...