Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 103(1): e14391, 2024 01.
Article in English | MEDLINE | ID: mdl-37929334

ABSTRACT

After preliminary ab initio calculations, 3-phenacyl substituted thiazolium salts, analogs of Alagebrium, were synthesized and investigated in vitro as glycation reaction inhibitors. The most part of investigations focused on the potential of the title compounds to attenuate the formation of fluorescent AGEs as well on their ability to disrupt the cross-linking formation among glycated proteins. Additionally, the capability of thiazolium salts to deglycate in the reaction of early glycation products with nitroblue tetrazolium was determined. Cytotoxicological properties of the title compounds were evaluated using LDH and MTT assays. The leader compound (3-[2-(biphenyl-4-yl)-2-oxoethyl]-1,3-thiazol-3-ium bromide) in a 50 mg/kg dose (p.o. 14 days) was further tested within an in vivo carbonyl stress model (rats, methylglyoxal 86.25 mg/kg/d, i.p., 14 days). As a result, the leader-molecule revealed a high effectiveness against all three examined mechanisms of glycation reaction inhibition in in vitro tests and was able to suppress capacity of methylglyoxal to form AGEs in vivo.


Subject(s)
Glycation End Products, Advanced , Pyruvaldehyde , Rats , Animals , Glycation End Products, Advanced/metabolism , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Salts , Thiazoles/pharmacology
2.
Biogerontology ; 25(3): 507-528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150086

ABSTRACT

Worldwide the aging population continues to increase, so the concept of healthy longevity medicine has become increasingly significant in modern society. Berberis vulgaris L. fruits serve as a functional food supplement with a high concentration of bioactive compounds, which offer numerous health-promoting benefits. The goal of this study was to investigate the geroprotective effect of Berberis vulgaris L. extract. Here we show that extract of Berberis vulgaris L. can, depending on concentrate, increases lifespan up to 6%, promote healthspan (stress resistance up to 35%, locomotor activity up to 25%, integrity of the intestinal barrier up to 12%, metabolic rate up to 5%) of Drosophila melanogaster (in vitro) and exhibits antioxidant (using red blood cell tests) and antiglycation activity (using glycation of bovine serum albumin) (in vitro). In addition to this, the extract does not exhibit cytotoxic properties in vitro, unlike the well-known polyphenolic compound quercetin. qRT-PCR has revealed the involvement of metabolic, heat shock response and lipid metabolism genes in the observed effects.


Subject(s)
Antioxidants , Berberis , Dietary Supplements , Drosophila melanogaster , Longevity , Plant Extracts , Animals , Antioxidants/pharmacology , Longevity/drug effects , Plant Extracts/pharmacology , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Male , Female , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...