Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855864

ABSTRACT

The transcription factor SRY-related HMG box 9 (Sox9) is essential for chondrogenesis. Mutations in and around SOX9 cause campomelic dysplasia (CD) characterized by skeletal malformations. Although the function of Sox9 in this context is well studied, the mechanisms that regulate Sox9 expression in chondrocytes remain to be elucidated. Here, we have used genome-wide profiling to identify 2 Sox9 enhancers located in a proximal breakpoint cluster responsible for CD. Enhancer activity of E308 (located 308 kb 5' upstream) and E160 (located 160 kb 5' upstream) correlated with Sox9 expression levels, and both enhancers showed a synergistic effect in vitro. While single deletions in mice had no apparent effect, simultaneous deletion of both E308 and E160 caused a dwarf phenotype, concomitant with a reduction of Sox9 expression in chondrocytes. Moreover, bone morphogenetic protein 2-dependent chondrocyte differentiation of limb bud mesenchymal cells was severely attenuated in E308/E160 deletion mice. Finally, we found that an open chromatin region upstream of the Sox9 gene was reorganized in the E308/E160 deletion mice to partially compensate for the loss of E308 and E160. In conclusion, our findings reveal a mechanism of Sox9 gene regulation in chondrocytes that might aid in our understanding of the pathophysiology of skeletal disorders.


Subject(s)
Campomelic Dysplasia , Cell Differentiation , Chondrocytes , Chondrogenesis , SOX9 Transcription Factor , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Animals , Chondrocytes/metabolism , Mice , Campomelic Dysplasia/genetics , Campomelic Dysplasia/pathology , Campomelic Dysplasia/metabolism , Chondrogenesis/genetics , Cell Differentiation/genetics , Enhancer Elements, Genetic/genetics , Chromatin/metabolism , Chromatin/genetics , Gene Expression Regulation, Developmental , Mice, Knockout , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Humans , Bone Development/genetics
SELECTION OF CITATIONS
SEARCH DETAIL