Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Sci Rep ; 13(1): 11791, 2023 07 21.
Article En | MEDLINE | ID: mdl-37479724

In this study, non-electrically controlled SalivaDirect loop-mediated isothermal amplification (NEC-SD-LAMP), which can detect infections by amplifying viral DNA expression in saliva without using electrical control systems, was developed. By this method, only by adding water to the device, viral DNA was extracted from saliva using SalivaDirect, the extracted DNA was amplified via loop-mediated isothermal amplification (LAMP), and the results were visually confirmed. Melting palmitic acid maintained the optimal temperature for the LAMP reaction, as the temperature of palmitic acid is maintained at 62.9 °C, its melting point. By exploiting the proximity of the melting point to the optimal temperature for LAMP, LAMP can be performed without electricity. We detected several viruses in the saliva using this method. NEC-SD-LAMP could clearly distinguish 3 types of viral DNA, indicating the high specificity of this reaction. Furthermore, the viral concentration detection limit of the device was 2 copies per µL, indicating that it is possible to detect DNA viral infections in saliva even before the onset of viral infection.


Communicable Diseases , Household Articles , Humans , DNA, Viral/genetics , Palmitic Acid , Electricity
2.
Sci Adv ; 9(15): eade7047, 2023 04 14.
Article En | MEDLINE | ID: mdl-37058558

Mutations in the LMNA gene encoding Lamin A and C (Lamin A/C), major components of the nuclear lamina, cause laminopathies including dilated cardiomyopathy (DCM), but the underlying molecular mechanisms have not been fully elucidated. Here, by leveraging single-cell RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), protein array, and electron microscopy analysis, we show that insufficient structural maturation of cardiomyocytes owing to trapping of transcription factor TEA domain transcription factor 1 (TEAD1) by mutant Lamin A/C at the nuclear membrane underlies the pathogenesis of Q353R-LMNA-related DCM. Inhibition of the Hippo pathway rescued the dysregulation of cardiac developmental genes by TEAD1 in LMNA mutant cardiomyocytes. Single-cell RNA-seq of cardiac tissues from patients with DCM with the LMNA mutation confirmed the dysregulated expression of TEAD1 target genes. Our results propose an intervention for transcriptional dysregulation as a potential treatment of LMNA-related DCM.


Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/metabolism , Lamin Type A/genetics , Myocytes, Cardiac/metabolism , Mutation , TEA Domain Transcription Factors
3.
Nat Commun ; 13(1): 3275, 2022 06 07.
Article En | MEDLINE | ID: mdl-35672400

Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-ß (TGF-ß). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-ß signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-ß signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-ß and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-ß-IGFBP7 pathway, which would be a therapeutic target for heart failure.


Heart Failure , Transforming Growth Factor beta , Fibroblasts/metabolism , Fibrosis , Heart Failure/metabolism , Humans , Insulin-Like Growth Factor Binding Proteins/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transforming Growth Factor beta/metabolism
4.
Sci Rep ; 8(1): 17480, 2018 11 30.
Article En | MEDLINE | ID: mdl-30504786

MicroRNA expression analysis is an important screening tool for the early detection of cancer. In this study, we developed two portable three-dimensional microdevices for multiple singleplex RNA expression analysis by microRNA purification and qRT-PCR as a prototype for point-of-care testing. These microdevices are composed of several types of modules termed 'chemical IC chips'. We successfully reduced the heating area and fluorescence observation area, reduced the energy required for the reaction, and improved the portability of all systems in the devices. The purification microdevice could purify the microRNA from the sample using the FTA elute card system. The disposable reactor module mounted on both devices was easily fabricated by deforming a 100-µm-thick polypropylene film using an uncomplicated procedure. The qRT-PCR microdevice could perform reactions for samples of small volume. We purified microRNA from the HepG2 liver cancer cell line using the purification microdevice and confirmed the expression level of miR-224, which is a potential biomarker for liver cancer. Furthermore, we observed an increase in the fluorescence intensity when we performed qRT-PCR in the qRT-PCR microdevice. Therefore, the two developed microdevices show promise as a new portable tool for early cancer detection.


Biomarkers, Tumor , Early Detection of Cancer , Lab-On-A-Chip Devices , MicroRNAs , Multiplex Polymerase Chain Reaction , Neoplasms/diagnosis , Neoplasms/genetics , Real-Time Polymerase Chain Reaction , Early Detection of Cancer/instrumentation , Early Detection of Cancer/methods , Equipment Design , Humans , Point-of-Care Testing , Printing, Three-Dimensional
5.
Cell Med ; 10: 2155179017733148, 2018.
Article En | MEDLINE | ID: mdl-32634179

Freezing is recognized as the most effective method of maintaining a stable supply of various cell types for long-term storage. However, cells might be damaged by environmental changes during the freezing process. There are various factors that influence the function of cells cultured after cryopreservation and thawing. These factors include cryopreservation solutions, biomaterials, freezing methods, and the freezing and preservation temperatures. There is also a risk of infection with mycoplasma in liquid nitrogen phase. Therefore, it is necessary to consider more useful and safe methods for freezing and storing various cells. In this study, we investigated the effects of temperature during long-term storage (8 years at -80 °C and in liquid nitrogen phase) on the quality of various cells (human hepatocellular carcinoma cells, bovine carotid artery normal endothelial cells, mouse fibroblast cells 3T3, and mouse embryo fibroblast cells STO). We examined the cell viability of cryopreserved human hepatocellular carcinoma cells at -80 °C using culture medium containing 10% DMSO, Cell Banker 1, and Cell Banker 2 as cryopreservation solutions. Among these solutions, Cell Banker 1 showed the highest efficiency. The viability of human hepatocellular carcinoma and bovine carotid artery normal endothelial cells in the Cell Banker 1 stored at -80 °C was over 90%, which was the same as that in liquid nitrogen phase. The cells stored at -80 °C had a morphology similar to that of the cells stored at liquid nitrogen phase. The proliferation of cells stored at -80 °C and in liquid nitrogen phase was not significantly different. Furthermore, none of the cells were infected with mycoplasma. There was no marked difference in the albumin secretion between the human hepatocellular carcinoma cells stored at -80 °C and those in liquid nitrogen phase. The short tandem repeats of the human hepatocellular carcinoma cells stored at -80 °C were identical to those stored in liquid nitrogen phase. In this report, various cells stored long-term at -80 °C were able to be used effectively after long-term storage. These findings can be applied to drug discovery, cell medicine, and cell therapy.

6.
Cell Med ; 9(1-2): 35-44, 2017 Jan 08.
Article En | MEDLINE | ID: mdl-28174673

The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were "adipose-like microtissues" that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5737-5740, 2016 Aug.
Article En | MEDLINE | ID: mdl-28269557

We can detect cancer in the early stages by validating the expression of cancer specific nucleic acids in the blood. In this report, we have developed the micro device for performing real-time polymerase chain reaction (real-time PCR), one of the methods used for determining the quantity of nucleic acids, using a small volume of reagent. This all-in-one device can perform real-time PCR with the inclusion of heating control and the analyzing system with optical sensor.


Early Detection of Cancer/instrumentation , Microtechnology/instrumentation , Optical Devices , Real-Time Polymerase Chain Reaction/instrumentation , Equipment Design , Hot Temperature , Humans , RNA/genetics
8.
Cell Med ; 7(2): 67-74, 2015 Feb 08.
Article En | MEDLINE | ID: mdl-26858895

Attempts to create artificial liver tissue from various cells have been reported as an alternative method for liver transplantation and pharmaceutical testing. In the construction of artificial liver tissue, the selection of the cell source is the most important factor. However, if an appropriate environment (in vitro/in vivo) cannot be provided for various cells, it is not possible to obtain artificial liver tissue with the desired function. Therefore, we focused on the in vitro environment and produced liver tissues using MEMS technology. In the present study, we report a combinatorial TASCL device to prepare 3D cell constructs in vitro. The TASCL device was fabricated with an overall size of 10 mm × 10 mm with microwells and a top aperture (400 µm × 400 µm, 600 µm × 600 µm, 800 µm × 800 µm) and bottom aperture (40 µm × 40 µm, 80 µm × 80 µm, 160 µm × 160 µm) per microwell. The TASCL device can be easily installed on various culture dishes with tweezers. Using plastic dishes as the bottom surface of the combinatorial TASCL device, 3D hepatocyte constructs of uniform sizes (about ɸ 100 µm-ɸ 200 µm) were produced by increasing the seeding cell density of primary mouse hepatocytes. The 3D hepatocyte constructs obtained using the TASCL device were alive and secreted albumin. On the other hand, partially adhered primary mouse hepatocytes exhibited a cobblestone morphology on the collagen-coated bottom of the individual microwells using the combinatorial TASCL device. By changing the bottom substrate of the TASCL device, the culture environment of the cell constructs was easily changed to a 3D environment. The combinatorial TASCL device described in this report can be used quickly and simply. This device will be useful for preparing hepatocyte constructs for application in drug screening and cell medicine.

9.
Cell Med ; 8(1-2): 47-56, 2015 Dec 17.
Article En | MEDLINE | ID: mdl-26858908

In drug discovery, it is very important to evaluate liver cells within an organism. Compared to 2D culture methods, the development of 3D culture techniques for liver cells has been successful in maintaining long-term liver functionality with the formation of a hepatic-specific structure. The key to performing drug testing is the establishment of a stable in vitro evaluation system. In this article, we report a Tapered Stencil for Cluster Culture (TASCL) device developed to create liver spheroids in vitro. The TASCL device will be applied as a toxicity evaluation system for drug discovery. The TASCL device was created with an overall size of 10 mm × 10 mm, containing 400 microwells with a top aperture (500 µm × 500 µm) and a bottom aperture (300 µm diameter circular) per microwell. We evaluated the formation, recovery, and size of HepG2 spheroids in the TASCL device. The formation and recovery were both nearly 100%, and the size of the HepG2 spheroids increased with an increase in the initial cell seeding density. There were no significant differences in the sizes of the spheroids among the microwells. In addition, the HepG2 spheroids obtained using the TASCL device were alive and produced albumin. The morphology of the HepG2 spheroids was investigated using FE-SEM. The spheroids in the microwells exhibited perfectly spherical aggregation. In this report, by adjusting the size of the microwells of the TASCL device, uniform HepG2 spheroids were created, and the device facilitated more precise measurements of the liver function per HepG2 spheroid. Our TASCL device will be useful for application as a toxicity evaluation system for drug testing.

10.
Biomed Microdevices ; 14(1): 35-43, 2012 Feb.
Article En | MEDLINE | ID: mdl-21898008

Electrospun nanofibers composed of biodegradable polymers are attractive candidates for cell culture scaffolds in tissue engineering. Their fine-meshed structures, resembling natural extracellular matrices, effectively interact with cell surfaces and promote cell proliferation. The application of electrospinning, however, is limited to two-dimensional (2D) or single tube-like scaffolds, and the fabrication of arbitrary three-dimensional (3D) scaffolds from electrospun nanofibers is still very difficult due to the fibers' continuous and entangled form. To address this issue, in this paper, we describe the use of phase-separation-assisted electrospray and electrostatic focusing to perform continuous direct 3D patterning of nanofibrous microcapsules of biodegradable polylactic acid (PLA). These microcapsules exhibit fiber-particle duality because they are composed of nanofibers suitable for cell attachment while also being easy to handle as particles for direct 3D patterning. By varying the flow rate of the polymer solution and the humidity of the electrospray atmosphere during electrospraying, the diameter of the microcapsule and its surface porosity can be controlled. The utility of the direct-patterning process is demonstrated by fabricating high-aspect-ratio microscaffolds and subsequent cell cultures. The nanofibrous and hollow structure of the microcapsules combined with the direct 3D patterning process offers a new approach for fabricating tailor-made scaffolds for regenerative medicine.


Lactic Acid/chemistry , Polymers/chemistry , Tissue Engineering/methods , Capsules , Hep G2 Cells , Humans , Humidity , Nanofibers , Polyesters
11.
Biomaterials ; 32(15): 3729-38, 2011 May.
Article En | MEDLINE | ID: mdl-21354615

Induced pluripotent stem (iPS) cells are expected to provide a source of tissue, a renewable cell source for tissue engineering, and a method for in vitro drug screening for patient-specific or disease-specific treatment. A simple technology by which iPS cells can be differentiated effectively and in large quantities is strongly desired. In this paper, a new device (Tapered Soft Stencil for Cluster Culture: TASCL) is proposed for the easy and efficient formation of EBs which can be used in regenerative medicine. This device was compared with the two major methods currently being evaluated, namely the HD method and the Terasaki® plate (MWC substitution), in terms of the efficiency, morphology and acquired number of EB formation. Using the TASCL device, the shape of the EBs formed was almost a perfect sphere, and the formation was also faster than for the two other methods. There was little variability in the number of cells. Moreover, EBs formed using the TASCL device had the ability to differentiate into all three germ layers, and differentiation of EBs from the TASCL culture into hepatic cells was confirmed. In conclusion, it appears that the TASCL device can be utilized for EB formation to generate cells for regenerative medicine applications.


Cell Culture Techniques/instrumentation , Embryoid Bodies/cytology , Induced Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Cell Line , Equipment Design , Germ Layers/cytology , Hepatocytes/cytology , Mice , Tissue Engineering/methods
...