Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(12): 10768-10776, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28301130

ABSTRACT

A facile route to graphene/polymer hydrogel nanofibers was developed. An aqueous dispersion of graphene (containing >40% bilayer graphene flakes) stabilized by a functionalized water-soluble polymer with phenyl side chains was successfully electrospun to yield nanofibers. Subsequent vapor-phase cross-linking of the nanofibers produced graphene-embedded hydrogel nanofibers (GHNFs). Interestingly, the GHNFs showed chemical sensitivity to the cationic dyes methylene blue (MB) and crystal violet (CV) in the aqueous phase. The adsorption capacities were as high as 0.43 and 0.33 mmol g-1 s-1 for MB and CV, respectively, even in a 1.5 mL s-1 flow system. A density functional theory calculation revealed that aqueous-phase MB and CV dyes were oriented parallel to the graphene surface and that the graphene/dye ensembles were stabilized by secondary physical bonding mechanisms such as the π-π stacking interaction in an aqueous medium. The GHNFs exhibited electrochemical properties arising mainly from the electric double-layer capacitance, which were applied in a demonstration of GHNF-based membrane electrodes (5 cm in diameter) for detecting the dyes in the flow system. It is believed that the GHNF membrane can be a successful model candidate for commercialization of graphene due to its easy-to-fabricate process and remarkable properties.

2.
Nanoscale ; 8(23): 11940-8, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27242155

ABSTRACT

Nanoparticles pack together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle packing is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle packing on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random packing of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated packing behaviors compared with the monophasic packing of each nanosphere species. The packing of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense packing of the nanospheres, which in turn could contribute to better device performance. The dense packing of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface area for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle packing" for desirable device performance.

4.
Sci Rep ; 6: 19761, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813878

ABSTRACT

Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all-solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg(-1) or 1.9 Wh L(-1) at a maximum power density of 3.2 kW kg(-1) or 0.7 kW L(-1); these performances were based on the mass or packing density of the electrode materials.

5.
Sci Rep ; 5: 14097, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26373685

ABSTRACT

Preparation of conducting-polymer hollow nanoparticles with different diameters was accomplished by surfactant templating. An anionic surfactant, namely sodium dodecylbenzenesulfonate, formed vesicles to template with the pyrrole monomer. Subsequent chemical oxidative polymerization of the monomer yielded spherical polypyrrole (PPy) nanoparticles with hollow interiors. The diameter of the hollow nanoparticles was easily controlled by adjusting the concentration of the surfactant. Subsequently, the size-dependent electrochemical properties of the nanoparticles, including redox properties and charge/discharge behavior, were examined. By virtue of the structural advantages, the specific capacitance (max. 326 F g(-1)) of PPy hollow nanoparticles was approximately twice as large as that of solid PPy nanospheres. The hollow PPy nanostructure can easily be used as a conductive substrate for the preparation of metal/polymer nanohybrids through chemical and electrochemical deposition. Two different pseudocapacitive metal-oxide clusters were readily deposited on the inner and outer surfaces of the hollow nanoparticles, which resulted in an increase in the specific capacitance to 390 F g(-1). In addition, the hollow nanoparticles acted as a nanocage to prevent metal ion leaching during charge/discharge, thus allowing an excellent capacitance retention of ca. 86%, even following 10,000 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL