Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Innate Immun ; 15(1): 765-781, 2023.
Article in English | MEDLINE | ID: mdl-37797588

ABSTRACT

Novel therapeutics are urgently needed to prevent opportunistic infections in immunocompromised individuals undergoing cancer treatments or other immune-suppressive therapies. Trained immunity is a promising strategy to reduce this burden of disease. We previously demonstrated that mesenchymal stromal cells (MSCs) preconditioned with a class A CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) agonist, can augment emergency granulopoiesis in a murine model of neutropenic sepsis. Here, we used a chimeric mouse model to demonstrate that MSCs secrete paracrine factors that act on lineage-negative c-kit+ hematopoietic stem cells (HSCs), leaving them "poised" to enhance emergency granulopoiesis months after transplantation. Chimeric mice developed from HSCs exposed to conditioned media from MSCs and CpG-ODN-preconditioned MSCs showed significantly higher bacterial clearance and increased neutrophil granulopoiesis following lung infection than control mice. By Cleavage Under Targets and Release Using Nuclease (CUT&RUN) chromatin sequencing, we identified that MSC-conditioned media leaves H3K4me3 histone marks in HSCs at genes involved in myelopoiesis and in signaling persistence by the mTOR pathway. Both soluble factors and extracellular vesicles from MSCs mediated these effects on HSCs and proteomic analysis by mass spectrometry revealed soluble calreticulin as a potential mediator. In summary, this study demonstrates that trained immunity can be mediated by paracrine factors from MSCs to induce neutrophil-trained immunity by reprogramming HSCs for long-lasting functional changes in neutrophil-mediated antimicrobial immunity.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice , Animals , Neutrophils , Culture Media, Conditioned/metabolism , Proteomics , Trained Immunity , Hematopoietic Stem Cells , Mesenchymal Stem Cells/metabolism
2.
J Bras Pneumol ; 49(2): e20220356, 2023.
Article in English, Portuguese | MEDLINE | ID: mdl-37132737

ABSTRACT

OBJECTIVE: Lymphangioleiomyomatosis (LAM) is a rare, destructive disease of the lungs with a limited number of determinants of disease activity, which are a critical need for clinical trials. FGF23 has been implicated in several chronic pulmonary diseases. We aimed to determine the association between serum FGF23 levels and pulmonary function in a cohort of patients with LAM. METHODS: This was a descriptive single-center study in which subjects with LAM and controls with unreported lung disease were recruited. Serum FGF23 levels were measured in all subjects. Clinical data, including pulmonary function testing, were retrospectively obtained from electronic medical records of LAM subjects. Associations between FGF23 levels and clinical features of LAM were explored via nonparametric hypothesis testing. RESULTS: The sample comprised 37 subjects with LAM and 16 controls. FGF23 levels were higher in the LAM group than in the control group. In the LAM group, FGF23 levels above the optimal cutoff point distinguished 33% of the subjects who had nondiagnostic VEGF-D levels. Lower FGF23 levels were associated with impaired DLCO (p = 0.04), particularly for those with isolated diffusion impairment with no other spirometric abnormalities (p = 0.04). CONCLUSIONS: Our results suggest that FGF23 is associated with pulmonary diffusion abnormalities in LAM patients and elicit novel mechanisms of LAM pathogenesis. FGF23 alone or in combination with other molecules needs to be validated as a biomarker of LAM activity in future clinical research.


Subject(s)
Lung Diseases , Lung Neoplasms , Lymphangioleiomyomatosis , Humans , Lymphangioleiomyomatosis/complications , Lymphangioleiomyomatosis/diagnosis , Lymphangioleiomyomatosis/pathology , Retrospective Studies , Lung Diseases/complications , Biomarkers , Lung , Lung Neoplasms/complications
3.
Immunol Cell Biol ; 101(5): 412-427, 2023 05.
Article in English | MEDLINE | ID: mdl-36862017

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. The accumulation of macrophages is associated with disease pathogenesis. The unfolded protein response (UPR) has been linked to macrophage activation in pulmonary fibrosis. To date, the impact of activating transcription factor 6 alpha (ATF6α), one of the UPR mediators, on the composition and function of pulmonary macrophage subpopulations during lung injury and fibrogenesis is not fully understood. We began by examining the expression of Atf6α in IPF patients' lung single-cell RNA sequencing dataset, archived surgical lung specimens, and CD14+ circulating monocytes. To assess the impact of ATF6α on pulmonary macrophage composition and pro-fibrotic function during tissue remodeling, we conducted an in vivo myeloid-specific deletion of Atf6α. Flow cytometric assessments of pulmonary macrophages were carried out in C57BL/6 and myeloid specific ATF6α-deficient mice in the context of bleomycin-induced lung injury. Our results demonstrated that Atf6α mRNA was expressed in pro-fibrotic macrophages found in the lung of a patient with IPF and in CD14+ circulating monocytes obtained from blood of a patient with IPF. After bleomycin administration, the myeloid-specific deletion of Atf6α altered the pulmonary macrophage composition, expanding CD11b+ subpopulations with dual polarized CD38+ CD206+ expressing macrophages. Compositional changes were associated with an aggravation of fibrogenesis including increased myofibroblast and collagen deposition. A further mechanistic ex vivo investigation revealed that ATF6α was required for CHOP induction and the death of bone marrow-derived macrophages. Overall, our findings suggest a detrimental role for the ATF6α-deficient CD11b+ macrophages which had altered function during lung injury and fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Injury , Mice , Animals , Lung Injury/metabolism , Activating Transcription Factor 6/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Lung/pathology , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Bleomycin/adverse effects , Bleomycin/metabolism
4.
J. bras. pneumol ; 49(2): e20220356, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440432

ABSTRACT

ABSTRACT Objective: Lymphangioleiomyomatosis (LAM) is a rare, destructive disease of the lungs with a limited number of determinants of disease activity, which are a critical need for clinical trials. FGF23 has been implicated in several chronic pulmonary diseases. We aimed to determine the association between serum FGF23 levels and pulmonary function in a cohort of patients with LAM. Methods: This was a descriptive single-center study in which subjects with LAM and controls with unreported lung disease were recruited. Serum FGF23 levels were measured in all subjects. Clinical data, including pulmonary function testing, were retrospectively obtained from electronic medical records of LAM subjects. Associations between FGF23 levels and clinical features of LAM were explored via nonparametric hypothesis testing. Results: The sample comprised 37 subjects with LAM and 16 controls. FGF23 levels were higher in the LAM group than in the control group. In the LAM group, FGF23 levels above the optimal cutoff point distinguished 33% of the subjects who had nondiagnostic VEGF-D levels. Lower FGF23 levels were associated with impaired DLCO (p = 0.04), particularly for those with isolated diffusion impairment with no other spirometric abnormalities (p = 0.04). Conclusions: Our results suggest that FGF23 is associated with pulmonary diffusion abnormalities in LAM patients and elicit novel mechanisms of LAM pathogenesis. FGF23 alone or in combination with other molecules needs to be validated as a biomarker of LAM activity in future clinical research.


RESUMO Objetivo: A linfangioleiomiomatose (LAM) é uma doença rara e destrutiva dos pulmões com um número limitado de determinantes da atividade da doença, que são uma necessidade crítica para ensaios clínicos. O FGF23 já foi implicado em várias doenças pulmonares crônicas. O nosso objetivo foi determinar a associação entre os níveis séricos de FGF23 e a função pulmonar em uma coorte de pacientes com LAM. Métodos: Estudo descritivo unicêntrico no qual foram recrutados indivíduos com LAM e controles com doenças pulmonares não declaradas. Os níveis séricos de FGF23 foram medidos em todos os indivíduos. Os dados clínicos, incluindo testes de função pulmonar, foram obtidos retrospectivamente a partir dos prontuários eletrônicos dos indivíduos com LAM. As associações entre os níveis de FGF23 e as características clínicas da LAM foram exploradas por meio do teste de hipóteses não paramétrico. Resultados: A amostra incluiu 37 indivíduos com LAM e 16 controles. Os níveis de FGF23 foram mais altos no grupo LAM do que no grupo controle. No grupo LAM, níveis de FGF23 acima do ponto de corte ideal distinguiram 33% dos indivíduos com níveis não diagnósticos de VEGF-D. Níveis mais baixos de FGF23 estavam associados à DLCO comprometida (p = 0,04), particularmente naqueles com comprometimento isolado da difusão e sem outras alterações espirométricas (p = 0,04). Conclusões: Nossos resultados sugerem que o FGF23 está associado a alterações na difusão pulmonar em pacientes com LAM e potencialmente indicam novos mecanismos de patogênese da LAM. O FGF23 isoladamente ou em combinação com outras moléculas precisa ser validado como um biomarcador da atividade da LAM em futuras pesquisas clínicas.

5.
J Biol Chem ; 298(11): 102580, 2022 11.
Article in English | MEDLINE | ID: mdl-36220392

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a multisystem disease occurring in women of child-bearing age manifested by uncontrolled proliferation of smooth muscle-like "LAM" cells in the lungs. LAM cells bear loss-of-function mutations in tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2, causing hyperactivation of the proliferation promoting mammalian/mechanistic target of Rapamycin complex 1 pathway. Additionally, LAM-specific active renin-angiotensin system (RAS) has been identified in LAM nodules, suggesting this system potentially contributes to neoplastic properties of LAM cells; however, the role of this renin-angiotensin signaling is unclear. Here, we report that TSC2-deficient cells are sensitive to the blockade of angiotensin II receptor type 1 (Agtr1). We show that treatment of these cells with the AGTR1 inhibitor losartan or silencing of the Agtr1 gene leads to increased cell death in vitro and attenuates tumor progression in vivo. Notably, we found the effect of Agtr1 blockade is specific to TSC2-deficient cells. Mechanistically, we demonstrate that cell death induced by Agtr1 inhibition is mediated by an increased expression of Klotho. In TSC2-deficient cells, we showed overexpression of Klotho or treatment with recombinant (soluble) Klotho mirrored the cytocidal effect of angiotensin blockade. Furthermore, Klotho treatment decreased the phosphorylation of AKT, potentially leading to this cytocidal effect. Conversely, silencing of Klotho rescued TSC2-deficient cells from cell death induced by Agtr1 inhibition. Therefore, we conclude that Agtr1 and Klotho are important for TSC2-deficient cell survival. These findings further illuminate the role of the RAS in LAM and the potential of targeting Agtr1 inhibition in TSC2-deficient cells.


Subject(s)
Lymphangioleiomyomatosis , Tuberous Sclerosis , Animals , Humans , Female , Tuberous Sclerosis Complex 2 Protein/genetics , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/metabolism , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism , Cell Death , Receptors, Angiotensin , Mammals
6.
Respir Res ; 23(1): 167, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739508

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by improper biogenesis of lysosome-related organelles (LROs). Lung fibrosis is the leading cause of death among adults with HPS-1 and HPS-4 genetic types, which are associated with defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3), a guanine exchange factor (GEF) for a small GTPase, Rab32. LROs are not ubiquitously present in all cell types, and specific cells utilize LROs to accomplish dedicated functions. Fibroblasts are not known to contain LROs, and the function of BLOC-3 in fibroblasts is unclear. Here, we report that lung fibroblasts isolated from patients with HPS-1 have increased migration capacity. Silencing HPS-1 in normal lung fibroblasts similarly leads to increased migration. We also show that the increased migration is driven by elevated levels of Myosin IIB. Silencing HPS1 or RAB32 in normal lung fibroblasts leads to increased MYOSIN IIB levels. MYOSIN IIB is downstream of p38-MAPK, which is a known target of angiotensin receptor signaling. Treatment with losartan, an angiotensin receptor inhibitor, decreases MYOSIN IIB levels and impedes HPS lung fibroblast migration in vitro. Furthermore, pharmacologic inhibition of angiotensin receptor with losartan seemed to decrease migration of HPS lung fibroblasts in vivo in a zebrafish xenotransplantation model. Taken together, we demonstrate that BLOC-3 plays an important role in MYOSIN IIB regulation within lung fibroblasts and contributes to fibroblast migration.


Subject(s)
Hermanski-Pudlak Syndrome , Albinism , Animals , Cell Movement , Fibroblasts/metabolism , Hemorrhagic Disorders , Hermanski-Pudlak Syndrome/genetics , Humans , Losartan/metabolism , Lung/metabolism , Nonmuscle Myosin Type IIB/metabolism , Receptors, Angiotensin , Zebrafish
7.
Life Sci Alliance ; 5(5)2022 05.
Article in English | MEDLINE | ID: mdl-35181635

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a rare progressive disease, characterized by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2) and hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1). Here, we report that E26 transformation-specific (ETS) variant transcription factor 2 (ETV2) is a critical regulator of Tsc2-deficient cell survival. ETV2 nuclear localization in Tsc2-deficient cells is mTORC1-independent and is enhanced by spleen tyrosine kinase (Syk) inhibition. In the nucleus, ETV2 transcriptionally regulates poly(ADP-ribose) polymerase 1 binding protein (PARPBP) mRNA and protein expression, partially reversing the observed down-regulation of PARPBP expression induced by mTORC1 blockade during treatment with both Syk and mTORC1 inhibitors. In addition, silencing Etv2 or Parpbp in Tsc2-deficient cells induced ER stress and increased cell death in vitro and in vivo. We also found ETV2 expression in human cells with loss of heterozygosity for TSC2, lending support to the translational relevance of our findings. In conclusion, we report a novel ETV2 signaling axis unique to Syk inhibition that promotes a cytocidal response in Tsc2-deficient cells and therefore maybe a potential alternative therapeutic target in LAM.


Subject(s)
Lymphangioleiomyomatosis , Poly(ADP-ribose) Polymerase Inhibitors , DNA-Binding Proteins/genetics , Endoplasmic Reticulum Stress , Humans , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Transcription Factors/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
FEBS J ; 289(2): 417-435, 2022 01.
Article in English | MEDLINE | ID: mdl-34355516

ABSTRACT

Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.


Subject(s)
Extracellular Vesicles/genetics , Inflammation/genetics , Sepsis/genetics , Syndecan-2/genetics , Animals , Cell Polarity/genetics , Cell Polarity/immunology , Disease Models, Animal , Extracellular Vesicles/immunology , Extracellular Vesicles/microbiology , Gene Expression Regulation, Developmental/genetics , Gene Silencing , Humans , Immunity/genetics , Inflammation/microbiology , Inflammation/pathology , Inflammation/therapy , Macrophages/immunology , Macrophages/microbiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Mice , Neutrophils/immunology , Neutrophils/microbiology , Paracrine Communication/genetics , Phagocytosis/genetics , Sepsis/microbiology , Sepsis/pathology , Sepsis/therapy
9.
J Cell Physiol ; 237(2): 1561-1572, 2022 02.
Article in English | MEDLINE | ID: mdl-34741311

ABSTRACT

Extensive inflammation causes epithelial cell hyperplasia in the airways and Bcl-2-interacting killer (Bik) reduces epithelial cell and mucous cell hyperplasia without affecting resting cells to restore homeostasis. These observations suggest that Bik induces apoptosis in a cell cycle-specific manner, but the mechanisms are not understood. Mice were exposed to an allergen for 3, 14, or 30 days and Bik expression was induced in airway epithelia of transgenic mice. Bik reduced epithelial and mucous cell hyperplasia when mice were exposed to an allergen for 3 or 14 days, but not when exposure lasted for 30 days, and Ki67-positivity was reduced. In culture, Bik expression killed proliferating cells but not quiescent cells. To capture the stage of the cell cycle when Bik induces cell death, airway cells that express fluorescent ubiquitin cell cycle indicators were generated that fluoresce red or green during the G0/G1 and S/G2/M phases of the cells cycle, respectively. Regardless of the cell cycle stage, Bik expression eliminated green-fluorescent cells. Also, Bik, when tagged with a blue-fluorescent protein, was only detected in green cells. Bik phosphorylation mutants at threonine 33 or serine 35 demonstrated that phosphorylation activated Bik to induce death even in quiescent cells. Immunoprecipitation and proteomic approaches identified casein kinase IIα to be responsible for phosphorylating and activating Bik to kill cells in S/G2/M. As casein kinase 2 alpha (CKIIα) is expressed only during the G2/M phase, we conclude that Bik activation in airway epithelial cells selectively targets hyperplastic epithelial cells, while leaving resting airway cells unaffected.


Subject(s)
Casein Kinase II , Proteomics , Allergens , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Division , Hyperplasia , Mice , Mitochondrial Proteins/metabolism
10.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: mdl-34665782

ABSTRACT

Lung allograft rejection results in the accumulation of low-molecular weight hyaluronic acid (LMW-HA), which further propagates inflammation and tissue injury. We have previously shown that therapeutic lymphangiogenesis in a murine model of lung allograft rejection reduced tissue LMW-HA and was associated with improved transplant outcomes. Herein, we investigated the use of 4-Methylumbelliferone (4MU), a known inhibitor of HA synthesis, to alleviate acute allograft rejection in a murine model of lung transplantation. We found that treating mice with 4MU from days 20 to 30 after transplant was sufficient to significantly improve outcomes, characterized by a reduction in T cell-mediated lung inflammation and LMW-HA content and in improved pathology scores. In vitro, 4MU directly attenuated activation, proliferation, and differentiation of naive CD4+ T cells into Th1 cells. As 4MU has already been demonstrated to be safe for human use, we believe examining 4MU for the treatment of acute lung allograft rejection may be of clinical significance.


Subject(s)
Graft Rejection/therapy , Hyaluronic Acid/adverse effects , Lung Transplantation/adverse effects , Allografts , Animals , Humans , Lung Transplantation/methods , Mice
11.
Mol Med ; 26(1): 75, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32736525

ABSTRACT

BACKGROUND: Therapeutic lymphangiogenesis in an orthotopic lung transplant model has been shown to improve acute allograft rejection that is mediated at least in part through hyaluronan drainage. Lymphatic vessel endothelial hyaluronan receptor (LYVE-1) expressed on the surface of lymphatic endothelial cells plays important roles in hyaluronan uptake. The impact of current immunosuppressive therapies on lung lymphatic endothelial cells is largely unknown. We tested the hypothesis that FK506, the most commonly used immunosuppressant after lung transplantation, induces lung lymphatic endothelial cell dysfunction. METHODS: Lung lymphatic endothelial cells were cultured in vitro and treated with FK506. Telomerase activity was measured using the TRAP assay. Protein expression of LYVE-1 and senescence markers p21 and ß-galactosidase was assessed with western blotting. Matrigel tubulation assay were used to investigate the effects of FK506 on TNF-α-induced lymphangiogenesis. Dual luciferase reporter assay was used to confirm NFAT-dependent transcriptional regulation of LYVE-1. Flow cytometry was used to examine the effects of FK506 on LYVE-1 in precision-cut-lung-slices ex vivo and on hyaluronan uptake in vitro. RESULTS: In vitro, FK506 downregulated telomerase reverse transcriptase expression, resulting in decreased telomerase activity and subsequent induction of p21 expression and cell senescence. Treatment with FK506 decreased LYVE-1 mRNA and protein levels and resulted in decreased LEC HA uptake. Similar result showing reduction of LYVE-1 expression when treated with FK506 was observed ex vivo. We identified a putative NFAT binding site on the LYVE-1 promoter and cloned this region of the promoter in a luciferase-based reporter construct. We showed that this NFAT binding site regulates LYVE-1 transcription, and mutation of this binding site blunted FK506-dependent downregulation of LYVE-1 promoter-dependent transcription. Finally, FK506-treated lymphatic endothelial cells show a blunted response to TNF-α-mediated lymphangiogenesis. CONCLUSION: FK506 alters lymphatic endothelial cell molecular characteristics and causes lymphatic endothelial cell dysfunction in vitro and ex vivo. These effects of FK506 on lymphatic endothelial cell may impair the ability of the transplanted lung to drain hyaluronan macromolecules in vivo. The implications of our findings on the long-term health of lung allografts merit more investigation.


Subject(s)
Cellular Senescence/drug effects , Cellular Senescence/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Hyaluronic Acid/metabolism , Tacrolimus/pharmacology , Vesicular Transport Proteins/genetics , Animals , Biological Transport , Cells, Cultured , Humans , Lymphangiogenesis/drug effects , Lymphangiogenesis/genetics , Mice , NFATC Transcription Factors/metabolism , Protein Binding , Telomerase/genetics , Telomerase/metabolism , Vesicular Transport Proteins/metabolism
12.
Sci Rep ; 9(1): 9003, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227795

ABSTRACT

Hyaluronan (HA) is associated with innate immune response activation and may be a marker of allograft dysfunction in lung transplant recipients. This was a prospective, single center study comparing levels of bronchioalveolar lavage (BAL) and serum HA and the HA immobilizer LYVE-1 in lung transplant recipients with and without acute cellular rejection (ACR). Chronic lung allograft dysfunction (CLAD)-free survival was also evaluated based on HA and LYVE-1 levels. 78 recipients were enrolled with a total of 115 diagnostic biopsies and 1.5 years of median follow-up. Serum HA was correlated with BAL HA (r = 0.25, p = 0.01) and with serum LYVE-1 (r = 0.32, p = 0.002). There was significant variation in HA and LYVE-1 over time, regardless of ACR status. Levels of serum HA (median 74.7 vs 82.7, p = 0.69), BAL HA (median 149.4 vs 134.5, p = 0.39), and LYVE-1 (mean 190.2 vs 183.8, p = 0.72) were not associated with ACR. CLAD-free survival was not different in recipients with any episode of elevated serum HA (HR = 1.5, 95% CI = 0.3-7.7, p = 0.61) or BAL HA (HR = 0.94, 95% CI = 0.2-3.6, p = 0.93). These results did not differ when stratified by bilateral transplant status. In this small cohort, serum HA, BAL HA, and LYVE-1 levels are not associated with ACR or CLAD-free survival in lung transplant recipients.


Subject(s)
Biomarkers/metabolism , Graft Rejection/metabolism , Hyaluronic Acid/metabolism , Lung Transplantation/methods , Vesicular Transport Proteins/metabolism , Aged , Allografts , Biomarkers/blood , Bronchoalveolar Lavage Fluid/chemistry , Female , Graft Rejection/blood , Graft Rejection/diagnosis , Humans , Hyaluronic Acid/blood , Male , Middle Aged , Prospective Studies , Sensitivity and Specificity , Survival Analysis , Transplant Recipients , Vesicular Transport Proteins/blood
13.
Immunol Cell Biol ; 97(2): 203-217, 2019 02.
Article in English | MEDLINE | ID: mdl-30298952

ABSTRACT

Although recent evidence has shown that IL-6 is involved in enhanced alternative activation of macrophages toward a profibrotic phenotype, the mechanisms leading to their increased secretory capacity are not fully understood. Here, we investigated the effect of IL-6 on endoplasmic reticulum (ER) expansion and alternative activation of macrophages in vitro. An essential mediator in this ER expansion process is the IRE1 pathway, which possesses a kinase and endoribonuclease domain to cleave XBP1 into a spliced bioactive molecule. To investigate the IRE1-XBP1 expansion pathway, IL-4/IL-13 and IL-4/IL-13/IL-6-mediated alternative programming of murine bone marrow-derived and human THP1 macrophages were assessed by arginase activity in cell lysates, CD206 and arginase-1 expression by flow cytometry, and secreted CCL18 by ELISA, respectively. Ultrastructural intracellular morphology and ER biogenesis were examined by transmission electron microscopy and immunofluorescence. Transcription profiling of 128 genes were assessed by NanoString and Pharmacological inhibition of the IRE1-XBP1 arm was achieved using STF-083010 and was verified by RT-PCR. The addition of IL-6 to the conventional alternative programming cocktail IL-4/IL-13 resulted in increased ER and mitochondrial expansion, profibrotic profiles and unfolded protein response-mediated induction of molecular chaperones. IRE1-XBP1 inhibition substantially reduced the IL-6-mediated hyperpolarization and normalized the above effects. In conclusion, the addition of IL-6 enhances ER expansion and the profibrotic capacity of IL-4/IL-13-mediated activation of macrophages. Therapeutic strategies targeting IL-6 or the IRE1-XBP1 axis may be beneficial to prevent the profibrotic capacity of macrophages.


Subject(s)
Endoplasmic Reticulum , Endoribonucleases/metabolism , Interleukin-3/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Macrophage-Activating Factors/metabolism , Macrophages/immunology , Macrophages/ultrastructure , Protein Serine-Threonine Kinases/metabolism , Animals , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/immunology , Humans , Interleukin-4/pharmacology , Interleukin-6/pharmacology , Macrophage Activation , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , THP-1 Cells
14.
Eur Respir J ; 52(2)2018 08.
Article in English | MEDLINE | ID: mdl-29976656

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with an unknown cause. Two drugs, nintedanib and pirfenidone, have been shown to slow, but not stop, disease progression. Pulmonary hypertension (PH) is a frequent complication in IPF patients and is associated with poor prognosis. Macitentan is a dual endothelin receptor antagonist that is approved for pulmonary arterial hypertension treatment. We hypothesised that using macitentan to treat animals with pulmonary fibrosis induced by adenoviral vector encoding biologically active transforming growth factor-ß1 (AdTGF-ß1) would improve the PH caused by chronic lung disease and would limit the progression of fibrosis.Rats (Sprague Dawley) which received AdTGF-ß1 were treated by daily gavage of macitentan (100 mg·kg-1·day-1), pirfenidone (0.5% food admix) or a combination from day 14 to day 28. Pulmonary artery pressure (PAP) was measured before the rats were killed, and fibrosis was subsequently evaluated by morphometric measurements and hydroxyproline analysis.AdTGF-ß1 induced pulmonary fibrosis associated with significant PH. Macitentan reduced the increase in PAP and both macitentan and pirfenidone stopped fibrosis progression from day 14 to day 28. Macitentan protected endothelial cells from myofibroblast differentiation and apoptosis whereas pirfenidone only protected against fibroblast-to-myofibroblast differentiation. Both drugs induced apoptosis of differentiated myofibroblasts in vitro and in vivoOur results demonstrate that dual endothelin receptor antagonism was effective in both PH and lung fibrosis whereas pirfenidone only affected fibrosis.


Subject(s)
Hypertension, Pulmonary/drug therapy , Myofibroblasts/drug effects , Pulmonary Fibrosis/pathology , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Cell Differentiation/drug effects , Disease Progression , Female , Humans , Hypertension, Pulmonary/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Male , Myofibroblasts/metabolism , Pulmonary Fibrosis/chemically induced , Pyridones/pharmacology , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/pharmacology
15.
Sci Rep ; 7(1): 13281, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038604

ABSTRACT

Although recent evidence indicates that gp130 cytokines, Oncostatin M (OSM) and IL-6 are involved in alternative programming of macrophages, their role in lung fibrogenesis is poorly understood. Here, we investigated the effect of transient adenoviral overexpression of OSM or IL-6 in mice during bleomycin-induced lung fibrosis. Lung fibrosis and M2-like macrophage accumulation were assessed by immunohistochemistry, western blotting, gene expression and flow cytometry. Ex-vivo isolated alveolar and bone marrow-derived macrophages were examined for M2-like programming and signalling. Airway physiology measurements at day 21 demonstrated that overexpression of OSM or IL-6 exacerbated bleomycin-induced lung elastance, consistent with histopathological assessment of extracellular matrix and myofibroblast accumulation. Flow cytometry analysis at day 7 showed increased numbers of M2-like macrophages in lungs of mice exposed to bleomycin and OSM or IL-6. These macrophages expressed the IL-6Rα, but were deficient for OSMRß, suggesting that IL-6, but not OSM, may directly induce alternative macrophage activation. In conclusion, the gp130 cytokines IL-6 and OSM contribute to the accumulation of profibrotic macrophages and enhancement of bleomycin-induced lung fibrosis. This study suggests that therapeutic strategies targeting these cytokines or their receptors may be beneficial to prevent the accumulation of M2-like macrophages and the progression of fibrotic lung disease.


Subject(s)
Bleomycin/adverse effects , Gene Expression , Interleukin-6/genetics , Macrophages/metabolism , Oncostatin M/genetics , Pulmonary Fibrosis/etiology , Animals , Biomarkers , Female , Immunohistochemistry , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Lectins, C-Type/metabolism , Lung , Macrophage Activation , Macrophages/immunology , Macrophages/pathology , Macrophages, Alveolar , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Models, Biological , Oncostatin M/metabolism , Phenotype , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...