Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
J Biomech Eng ; 146(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-37943113

The injury risk in a vehicle crash can depend on occupant specific factors. Virtual crash testing using finite element human body models (HBMs) to represent occupant variability can enable the development of vehicles with improved safety for all occupants. In this study, it was investigated how many HBMs of different sizes that are needed to represent a population crash outcome through a metamodel. Rib fracture risk was used as an example occupant injury outcome. Morphed HBMs representing variability in sex, height, and weight within defined population ranges were used to calculate population variability in rib fracture risk in a frontal and a side crash. Two regression methods, regularized linear regression with second-order terms and Gaussian process regression (GPR), were used to metamodel rib fracture risk due to occupant variability. By studying metamodel predictive performance as a function of training data, it was found that constructing GPR metamodels using 25 individuals of each sex appears sufficient to model the population rib fracture risk outcome in a general crash scenario. Further, by utilizing the known outcomes in the two crashes, an optimization method selected individuals representative for population outcomes across both crash scenarios. The optimization results showed that 5-7 individuals of each sex were sufficient to create predictive GPR metamodels. The optimization method can be extended for more crashes and vehicles, which can be used to identify a family of HBMs that are generally representative of population injury outcomes in future work.


Rib Fractures , Wounds and Injuries , Humans , Accidents, Traffic , Human Body , Risk
2.
Front Bioeng Biotechnol ; 11: 1203959, 2023.
Article En | MEDLINE | ID: mdl-37908376

Occupant kinematics during evasive maneuvers, such as crash avoidance braking or steering, varies within the population. Studies have tried to correlate the response to occupant characteristics such as sex, stature, age, and BMI, but these characteristics explain no or very little of the variation. Therefore, hypothesis have been made that the difference in occupant response stems from voluntary behavior. The aim of this study was to investigate the effect from other sources of variability: in neural delay, in passive stiffness of fat, muscle tissues and skin, in muscle size and in spinal alignment, as a first step towards explaining the variability seen among occupants in evasive maneuvers. A sensitivity analysis with simulations of the SAFER Human Body Model in braking was performed, and the displacements from the simulations were compared to those of volunteers. The results suggest that the head and torso kinematics were most sensitive to spinal alignment, followed by muscle size. For head and torso vertical displacements, the range in model kinematics was comparable to the range in volunteer kinematics. However, for forward displacements, the included parameters only explain some of the variability seen in the volunteer experiment. To conclude, the results indicate that the variation in volunteer vertical kinematics could be partly attributed to the variability in human characteristics analyzed in this study, while these cannot alone explain the variability in forward kinematics. The results can be used in future tuning of HBMs, and in future volunteer studies, when further investigating the potential causes of the large variability seen in occupant kinematics in evasive maneuvers.

3.
Accid Anal Prev ; 193: 107328, 2023 Dec.
Article En | MEDLINE | ID: mdl-37837890

Differences in injury risk between females and males are often reported in field data analysis. The aim of this study was to investigate the differences in kinematics and injury risks between average female and male anthropometry in two exemplary use cases. A simulation study comprising the newly introduced VIVA+ human body models (HBM) was performed for two use cases. The first use case relates to whiplash associated disorders sustained in rear impacts and the second to femur fractures in pedestrians impacted by passenger cars as field data indicates that females have higher injury risk compared to males in these scenarios. Detailed seat models and a generic vehicle exterior were used to simulate crash scenarios close to those currently tested in consumer information tests. In the evaluations with one of the vehicle seats and one car shape the injury risks were equal for both models. However, the risk of the average female HBM for whiplash associated disorders was 1.5 times higher compared to the average male HBM for the rear impacts in the other seat and 10 times higher for proximal femur fractures in the pedestrian impacts for one of the two evaluated vehicle shapes.. Further work is needed to fully understand trends observed in the field and to derive appropriate countermeasures, which can be performed with the open source tools introduced in the current study.


Fractures, Bone , Whiplash Injuries , Wounds and Injuries , Humans , Male , Female , Accidents, Traffic , Automobiles , Computer Simulation , Whiplash Injuries/epidemiology , Whiplash Injuries/etiology , Biomechanical Phenomena , Wounds and Injuries/epidemiology , Wounds and Injuries/etiology
4.
Front Bioeng Biotechnol ; 11: 1154272, 2023.
Article En | MEDLINE | ID: mdl-37034266

Rib fractures remain a common injury for vehicle occupants in crashes. The risk of a human sustaining rib fractures from thorax loading is highly variable, potentially due to a variability in individual factors such as material properties and geometry of the ribs and ribcage. Human body models (HBMs) with a detailed ribcage can be used as occupant substitutes to aid in the prediction of rib injury risk at the tissue level in crash analysis. To improve this capability, model parametrization can be used to represent human variability in simulation studies. The aim of this study was to identify the variations in the physical properties of the human thorax that have the most influence on rib fracture risk for the population of vehicle occupants. A total of 15 different geometrical and material factors, sourced from published literature, were varied in a parametrized SAFER HBM. Parametric sensitivity analyses were conducted for two crash configurations, frontal and near-side impacts. The results show that variability in rib cortical bone thickness, rib cortical bone material properties, and rib cross-sectional width had the greatest influence on the risk for an occupant to sustain two or more fractured ribs in both impacts. Therefore, it is recommended that these three parameters be included in rib fracture risk analysis with HBMs for the population of vehicle occupants.

5.
Front Bioeng Biotechnol ; 11: 1106554, 2023.
Article En | MEDLINE | ID: mdl-36860885

Introduction: Chest deformation has been proposed as the best predictor of thoracic injury risk in frontal impacts. Finite Element Human Body Models (FE-HBM) can enhance the results obtained in physical crash tests with Anthropometric Test Devices (ATD) since they can be exposed to omnidirectional impacts and their geometry can be modified to reflect specific population groups. This study aims to assess the sensitivity of two thoracic injury risk criteria (PC Score and Cmax) to several personalization techniques of FE-HBMs. Methods: Three 30° nearside oblique sled tests were reproduced using the SAFER HBM v8 and three personalization techniques were applied to this model to evaluate the influence on the risk of thoracic injuries. First, the overall mass of the model was adjusted to represent the weight of the subjects. Second, the model anthropometry and mass were modified to represent the characteristics of the post-mortem human subjects (PMHS). Finally, the spine alignment of the model was adapted to the PMHS posture at t = 0 ms, to conform to the angles between spinal landmarks measured in the PMHS. The following two metrics were used to predict three or more fractured ribs (AIS3+) of the SAFER HBM v8 and the effect of personalization techniques: the maximum posterior displacement of any studied chest point (Cmax), and the sum of the upper and lower deformation of selected rib points (PC score). Results: Despite having led to statistically significant differences in the probability of AIS3+ calculations, the mass-scaled and morphed version provided, in general, lower values for injury risk than the baseline model and the postured version being the latter, which exhibited the better approximation to the PMHS tests in terms of probability of injury. Additionally, this study found that the prediction of AIS3+ chest injuries based on PC Score resulted in higher probability values than the prediction based on Cmax for the loading conditions and personalization techniques analyzed within this study. Discussion: This study could demonstrate that the personalization techniques do not lead to linear trends when they are used in combination. Furthermore, the results included here suggest that these two criteria will result in significantly different predictions if the chest is loaded more asymmetrically.

6.
Traffic Inj Prev ; 24(1): 69-74, 2023.
Article En | MEDLINE | ID: mdl-36512330

Objective: The objective of this study is to analyze the 6 degrees of freedom (DOF) motion of the spine using the finite helical axis (FHA) in three postmortem human surrogates (PMHS) sled tests.Methods: The sled test configurations corresponded to a 30° nearside oblique impact at 35 km/h. Two different restraint system versions (RSv) were used. RSv1 was used for PMHS A and B while RSv2 was used for PMHS C. The 6 DOF motion of the head and three selected vertebrae have been analyzed using the FHA which describes the 3 D motion of a rigid body between two instants of time as a rotation about and a translation along a unit vector. A minimal amount of rotation is necessary to the FHA calculation, thus the FHA components have been calculated based on a pre-defined interval of 8° of rotation.Results: The analysis of the FHA components demonstrated right lateral bending until around 100 ms, when the rebound phase was reached and the head and the lower spine undergoes left lateral bending. The three PMHS exhibited, in general, flexion movement of the whole body and torsion to the right side of the occupant. This general motion can be associated to the effect of the seatbelt acting as a fulcrum of the rotational movement of the bony landmarks. The interaction of the PMHS with the retention system can be noted by analyzing the time in which the head and the upper spine initiated the rotation and the sudden changes of rotational direction of the three PMHS's head.Conclusions: The rotational analyses have shown to be more sensitive to experimental events than the trajectory analyses for the studied physical tests. Additionally, the results presented in the present study contributes to the analysis of the body kinematics during an oblique impact and adds new experimental data for Human Body Models (HBM) and Anthropometric Test Devices (ATD) benchmarking.


Acceleration , Accidents, Traffic , Humans , Cadaver , Spine , Rotation , Biomechanical Phenomena
7.
Front Bioeng Biotechnol ; 11: 1313543, 2023.
Article En | MEDLINE | ID: mdl-38283169

Objective: Real-life car crashes are often preceded by an evasive maneuver, which can alter the occupant posture and muscle state. To simulate the occupant response in such maneuvers, human body models (HBMs) with active muscles have been developed. The aim of this study was to implement an omni-directional rotational head-neck muscle controller in the SAFER HBM and compare the bio-fidelity of the HBM with a rotational controller to the HBM with a translational controller, in simulations of evasive maneuvers. Methods: The rotational controller was developed using an axis-angle representation of head rotations, with x, y, and z components in the axis. Muscle load sharing was based on rotational direction in the simulation and muscle activity recorded in three volunteer experiments in these directions. The gains of the rotational and translational controller were tuned to minimize differences between translational and rotational head displacements of the HBM and volunteers in braking and lane change maneuvers using multi-objective optimizations. Bio-fidelity of the model with tuned controllers was evaluated objectively using CORrelation and Analysis (CORA). Results: The results indicated comparable performance for both controllers after tuning, with somewhat higher bio-fidelity for rotational kinematics with the translational controller. After tuning, good or excellent bio-fidelity was indicated for both controllers in the loading direction (forward in braking, and lateral in lane change), with CORA scores of 0.86-0.99 and 0.93-0.98 for the rotational and translational controllers, respectively. For rotational displacements, and translational displacements in the other directions, bio-fidelity ranged from poor to excellent, with slightly higher average CORA scores for the HBM with the translational controller in both braking and lane changing. Time-averaged muscle activity was within one standard deviation of time-averaged muscle activity from volunteers. Conclusion: Overall, the results show that when tuned, both the translational and rotational controllers can be used to predict the occupant response to an evasive maneuver, allowing for the inclusion of evasive maneuvers prior to a crash in evaluation of vehicle safety. The rotational controller shows potential in controlling omni-directional head displacements, but the translational controller outperformed the rotational controller. Thus, for now, the recommendation is to use the translational controller with tuned gains.

8.
J Mech Behav Biomed Mater ; 136: 105527, 2022 12.
Article En | MEDLINE | ID: mdl-36306670

Rib fractures are common traumatic injuries, with links to increased morbidity and mortality. Finite element ribs from human body models have struggled to predict the force-displacement response, force and displacement at fracture, and the fracture location for isolated rib tests. In the current study, the sensitivity of a human body model rib with updated anisotropic and asymmetric material models to changes in boundary conditions, material properties, and geometry was investigated systematically to quantify contributions to response. The updated material models using uncalibrated average material properties from literature improved the force-displacement response of the model, whereas the cross-sectional geometry was the only parameter to effect fracture location. The resulting uncalibrated model with improved material models and cross-sectional geometry closely predicted experimental average force-displacement response and fracture location.


Models, Biological , Rib Fractures , Humans , Biomechanical Phenomena , Accidents, Traffic , Ribs/physiology , Finite Element Analysis
9.
Front Bioeng Biotechnol ; 10: 968939, 2022.
Article En | MEDLINE | ID: mdl-36246354

Previous research has not produced a satisfactory resource to study reflexive muscle activity for investigating potentially injurious whiplash motions. Various experimental and computational studies are available, but none provided a comprehensive biomechanical representation of human response during rear impacts. Three objectives were addressed in the current study to develop female and male finite element human body models with active reflexive neck muscles: 1) eliminate the buckling in the lower cervical spine of the model observed in earlier active muscle controller implementations, 2) evaluate and quantify the influence of the individual features of muscle activity, and 3) evaluate and select the best model configuration that can be used for whiplash injury predictions. The current study used an open-source finite element model of the human body for injury assessment representing an average 50th percentile female anthropometry, together with the derivative 50th percentile male morphed model. Based on the head-neck kinematics and CORelation and Analyis (CORA) tool for evaluation, models with active muscle controller and parallel damping elements showed improved head-neck kinematics agreement with the volunteers over the passive models. It was concluded that this model configuration would be the most suitable for gender-based whiplash injury prediction when different impact severities are to be studied.

10.
Front Bioeng Biotechnol ; 10: 918904, 2022.
Article En | MEDLINE | ID: mdl-35928956

Finite element Human Body Models are increasingly becoming vital tools for injury assessment and are expected to play an important role in virtual vehicle safety testing. With the aim of realizing models to study sex-differences seen in the injury- and fatality-risks from epidemiology, we developed models that represent an average female and an average male. The models were developed with an objective to allow tissue-based skeletal injury assessment, and thus non-skeletal organs and joints were defined with simplified characterizations to enhance computational efficiency and robustness. The model lineup comprises female and male representations of (seated) vehicle occupants and (standing) vulnerable road users, enabling the safety assessment of broader segments of the road user population. In addition, a new workflow utilized in the model development is presented. In this workflow, one model (the seated female) served as the base model while all the other models were generated as closely-linked derivative models, differing only in terms of node coordinates and mass distribution. This approach opens new possibilities to develop and maintain further models as part of the model lineup, representing different types of road users to reflect the ongoing transitions in mobility patterns (like bicyclists and e-scooter users). In this paper, we evaluate the kinetic and kinematic responses of the occupant and standing models to blunt impacts, mainly on the torso, in different directions (front, lateral, and back). The front and lateral impacts to the thorax showed responses comparable to the experiments, while the back impact varied with the location of impact (T1 and T8). Abdomen bar impact showed a stiffer load-deflection response at higher intrusions beyond 40 mm, because of simplified representation of internal organs. The lateral shoulder impact responses were also slightly stiffer, presumably from the simplified shoulder joint definition. This paper is the first in a series describing the development and validation of the new Human Body Model lineup, VIVA+. With the inclusion of an average-sized female model as a standard model in the lineup, we seek to foster an equitable injury evaluation in future virtual safety assessments.

11.
J Orthop Surg Res ; 17(1): 275, 2022 May 15.
Article En | MEDLINE | ID: mdl-35570304

BACKGROUND: The triple pelvic osteotomy is an established surgical method with multiple modifications regarding surgical technique and choice of implant. The stability of the osteotomy is affected by numerous factors, and among these, the three-dimensional implant configuration is a scientifically less explored aspect. METHODS: We used a finite element model of a hemi-pelvis with a standardized triple osteotomy to calculate relative flexibility for loads in all translational degrees of freedom for five different implant configurations. Two of the configurations used entry points only feasible when implant removal was not necessary. RESULTS: The stability of the osteotomy improved with an increased distance between the implants in the plane of the osteotomy as well as for a more perpendicular angle relative to the osteotomy plane. The implant configurations with more entry points available made this easier to adhere to. CONCLUSION: The use of bioabsorbable implants may provide better opportunities for optimal implant constructs which can, to a certain degree, compensate for the lesser mechanical stiffness of bioabsorbable polymers as compared to metal implants.


Osteotomy , Pelvis , Biomechanical Phenomena , Finite Element Analysis , Osteotomy/methods , Prostheses and Implants
12.
Traffic Inj Prev ; 23(4): 181-186, 2022.
Article En | MEDLINE | ID: mdl-35201949

OBJECTIVE: The present study has three objectives: First, to analyze the chest deflection measured in nearside oblique tests performed with three post mortem human subjects (PMHS). Second, to assess the capability of a HBM to predict the chest deflection sustained by the PMHS. Third to evaluate the influence on chest deflection prediction of subject-specific HBM. METHODS: Three dimensional chest deformation of five anterior chest landmarks was extracted from three PMHS (A-C) in three sled tests. The sled test configurations corresponded to a 30 degree nearside oblique impact at 35 km/h. Two different restraint system versions (RSv) were used. RSv1 was used for PMHS A and B while RSv2 was used for PMHS C. The capability of the SAFER HBM (called baseline model) to predict PMHS chest deflection was benchmarked by means of the PMHS test results. In a second step, the anthropometry, mass and pre-impact posture of the baseline HBM were modified to the PMHS-specific characteristics to develop a model to assess the influence of personalization techniques in the capability of the human body model to predict PMHS chest deflection. RESULTS: In the sled tests, the measured sternum compression relative to the eighth thoracic vertebra in the PMHS tests was 49, 54 and 55 millimeters respectively. The HBM baseline model predicted 48%, 43% and 34% of the deflections measured in the PMHS tests, while the personalized version predicted 38%, 34% and 28%. When chest deflection was analyzed in x-, y- and z-direction for the five chest landmarks it was found that neither the baseline HBM nor the personalized model predicted x, y and z axis deflections. CONCLUSIONS: The PMHS in situ chest deflection was found to be sensitive to the variation in restraint system and the three PMHS exhibited greater values of lower right chest deflection compared to what was found in available literature. The baseline HBM underpredicted peak chest deflection obtained in the PMHS test. The personalized model was not capable of predicting the chest deflection sustained by the PMHS. Hence, further biofidelity investigations have to be carried out on the human body thorax model for oblique loading.


Accidents, Traffic , Human Body , Biomechanical Phenomena , Cadaver , Humans , Research Subjects , Thorax
13.
Int J Numer Method Biomed Eng ; 38(4): e3572, 2022 04.
Article En | MEDLINE | ID: mdl-35050534

The slide of the lap belt over the iliac crest of the pelvis during vehicle frontal crashes can substantially increase the risk of some occupant injuries. A multitude of factors, related to occupants or the design of belt, are associated with this phenomenon. This study investigates safety belt-to-pelvis interaction and identifies the most influential parameters. It also explores how initial lap belt position influences the interaction between lap belt and pelvis. A finite element model of the interaction between lap belt with pelvis through a soft tissue part was created. Belt angle, belt force, belt loading rate and belt-to-body friction as belt design parameters, and pelvis angle, constitute parameters of soft tissue, and soft tissue-to-pelvis friction as occupant parameters were inspected. For the soft tissue part, subcutaneous adipose tissue with different thicknesses was created and the effect initial lap belt position may have on lap belt-to-pelvis interaction was investigated. The influential parameters have been identified as: the belt angle and belt force as belt design parameters and the pelvis angle and compressibility of soft tissue as occupant parameters. The risk for the slide of lap belt over the iliac crest of the pelvis was predicted higher as the initial lap belt positions goes superior to the pelvis. Of different submarining parameters, the lap belt angle represents the most influential one. The lap belt-to-pelvis interaction is influenced by the thickness of subcutaneous adipose tissue between lap belt and pelvis indicating a higher risk for obese occupants.


Accidents, Traffic , Pelvis , Abdomen , Biomechanical Phenomena
14.
Comput Methods Biomech Biomed Engin ; 25(10): 1125-1155, 2022 Aug.
Article En | MEDLINE | ID: mdl-34843416

Morphing can be used to alter human body models (HBMs) to represent a diverse population of occupants in car crashes. The mid-sized male SAFER HBM v9 was parametrically morphed to match 22 Post Mortem Human Subjects, loaded in different configurations. Kinetics and kinematics were compared for the morphed and baseline HBMs. In frontal impacts, the morphed HBMs correlated closer with the kinematics of obese subjects, but lower to small females. In lateral impacts HBM responses were too stiff. This study outlines a necessary evaluation of all HBMs that should be morphed to represent the diverse population in vehicle safety evaluations.


Accidents, Traffic , Human Body , Biomechanical Phenomena , Female , Humans , Male , Obesity
15.
J Biomech ; 126: 110633, 2021 09 20.
Article En | MEDLINE | ID: mdl-34388538

Pelvic fractures have been identified as the second most common AIS2+ injury in motor vehicle crashes, with the highest early mortality rate compared to other orthopaedic injuries. Further, the risk is associated with occupant sex, age, stature and body mass index (BMI). In this study, clinical pelvic CT scans from 132 adults (75 females, 57 males) were extracted from a patient database. The population shape variance in pelvis bone geometry was studied by Sparse Principal Component Analysis (SPCA) and a morphometric model was developed by multivariate linear regression using overall anthropometric variables (sex, age, stature, BMI). In the analysis, SPCA identified 15 principal components (PCs) describing 83.6% of the shape variations. Eight of these were significantly captured (α < 0.05) by the morphometric model, which predicted 29% of the total variance in pelvis geometry. The overall anthropometric variables were significantly related to geometrical features primarily in the inferior-anterior regions while being unable to significantly capture local sacrum features, shape and position of ASIS and lateral tilt of the iliac wings. In conclusion, a new detailed morphometric model of the pelvis bone demonstrated that overall anthropometric variables account for only 29% of the variance in pelvis geometry. Furthermore, variations in the superior-anterior region of the pelvis, with which the lap belt is intended to interact, were not captured. Depending on the scenario, shape variations not captured by overall anthropometry could have important implications for injury prediction in traffic safety analysis.


Accidents, Traffic , Pelvic Bones , Adult , Anthropometry , Body Mass Index , Female , Humans , Male , Pelvic Bones/diagnostic imaging , Pelvis/diagnostic imaging
16.
Front Bioeng Biotechnol ; 9: 677768, 2021.
Article En | MEDLINE | ID: mdl-34109166

To evaluate vehicle occupant injury risk, finite element human body models (HBMs) can be used in vehicle crash simulations. HBMs can predict tissue loading levels, and the risk for fracture can be estimated based on a tissue-based risk curve. A probabilistic framework utilizing an age-adjusted rib strain-based risk function was proposed in 2012. However, the risk function was based on tests from only twelve human subjects. Further, the age adjustment was based on previous literature postulating a 5.1% decrease in failure strain for femur bone material per decade of aging. The primary aim of this study was to develop a new strain-based rib fracture risk function using material test data spanning a wide range of ages. A second aim was to update the probabilistic framework with the new risk function and compare the probabilistic risk predictions from HBM simulations to both previous HBM probabilistic risk predictions and to approximate real-world rib fracture outcomes. Tensile test data of human rib cortical bone from 58 individuals spanning 17-99 years of ages was used. Survival analysis with accelerated failure time was used to model the failure strain and age-dependent decrease for the tissue-based risk function. Stochastic HBM simulations with varied impact conditions and restraint system settings were performed and probabilistic rib fracture risks were calculated. In the resulting fracture risk function, sex was not a significant covariate-but a stronger age-dependent decrease than previously assumed for human rib cortical bone was evident, corresponding to a 12% decrease in failure strain per decade of aging. The main effect of this difference is a lowered risk prediction for younger individuals than that predicted in previous risk functions. For the stochastic analysis, the previous risk curve overestimated the approximate real-world rib fracture risk for 30-year-old occupants; the new risk function reduces the overestimation. Moreover, the new function can be used as a direct replacement of the previous one within the 2012 probabilistic framework.

17.
Ann Biomed Eng ; 49(1): 115-128, 2021 Jan.
Article En | MEDLINE | ID: mdl-32333133

ViVA Open Human Body Model (HBM) is an open-source human body model that was developed to fill the gap of currently available models that lacked the average female size. In this study, the head-neck model of ViVA OpenHBM was further developed by adding active muscle controllers for the cervical muscles to represent the human neck muscle reflex system as studies have shown that cervical muscles influence head-neck kinematics during impacts. The muscle controller was calibrated by conducting optimization-based parameter identification of published-volunteer data. The effects of different calibration objectives to head-neck kinematics were analyzed and compared. In general, a model with active neck muscles improved the head-neck kinematics agreement with volunteer responses. The current study highlights the importance of including active muscle response to mimic the volunteer's kinematics. A simple PD controller has found to be able to represent the behavior of the neck muscle reflex system. The optimum gains that defined the muscle controllers in the present study were able to be identified using optimizations. The present study provides a basis for describing an active muscle controller that can be used in future studies to investigate whiplash injuries in rear impacts.


Cervical Vertebrae/physiology , Head/physiology , Models, Biological , Muscle, Skeletal/physiology , Neck/physiology , Whiplash Injuries/physiopathology , Accidents, Traffic , Biomechanical Phenomena , Female , Finite Element Analysis , Head Movements/physiology , Humans
18.
J Mech Behav Biomed Mater ; 106: 103742, 2020 06.
Article En | MEDLINE | ID: mdl-32250953

To enable analysis of the risk of occupants sustaining rib fractures in a crash, generic finite element models of human ribs, one through twelve, were developed. The generic ribs representing an average sized male, were created based on data from several sources and publications. The generic ribs were validated for stiffness and strain predictions in anterior-posterior bending. Essentially, both predicted rib stiffness and rib strain, measured at six locations, were within one standard deviation of the average result in the physical tests. These generic finite elements ribs are suitable for strain-based rib fracture risk predictions, when loaded in anterior-posterior bending. To ensure that human variability is accounted for in future studies, a rib parametric study was conducted. This study shows that the rib cross-sectional height, i.e., the smallest of the cross-sectional dimensions, accounted for most of the strain variance during anterior-posterior loading of the ribs. Therefore, for future rib fracture risk predictions with morphed models of the human thorax, it is important to accurately address rib cross-sectional height.


Accidents, Traffic , Finite Element Analysis , Rib Fractures , Biomechanical Phenomena , Cross-Sectional Studies , Humans , Male , Ribs , Risk Assessment
19.
Accid Anal Prev ; 138: 105443, 2020 Apr.
Article En | MEDLINE | ID: mdl-32059123

To prioritize how the development of mathematical human body models for injury prediction in crash safety analysis should be made, the most frequent injuries in the NASS CDS data from 2000 to 2015 were analyzed. The crashes were divided into seven types, from front to side. Non-minor injuries (AIS2+) were analyzed in two steps. In the first step, a grouping was made according to the AIS definition of body regions: head, face, neck, thorax, abdomen and pelvic contents, spine, upper extremities (including shoulder girdle) and lower extremities (including pelvis). In a second step, the body regions were divided in organs, parts of the spine, and parts of the extremities. The three most often injured anatomical structures of each body region were estimated for drivers and front seat passengers in each type of crash. For drivers, an injury risk greater than 2.4 % was found for the lower extremities (pelvis) and the head (concussion) in side oblique near side impacts, for the head in frontal oblique near side impacts (concussion) and for the lower extremities (ankle joint) in frontal impacts. For passengers, an injury risk greater than 2.4 % was found for the thorax (lungs) in side near side impacts, for the head (concussion) in front oblique near side impacts, and for the thorax (sternum) and the upper extremities (wrist, hand) in frontal impacts. Future development of human body models should focus on injuries to the head, thorax and the lower extremities. More specifically, it should focus on concussion in all impact directions and on rib and pelvic fractures in side near side impacts and in side oblique near side impacts.


Accidents, Traffic/classification , Human Body , Manikins , Wounds and Injuries/classification , Automobiles , Humans , Risk Assessment
20.
Traffic Inj Prev ; 20(sup2): S88-S95, 2019.
Article En | MEDLINE | ID: mdl-31589083

Objective: The current state of the art human body models (HBMs) underpredict the number of fractured ribs. Also, it has not been shown that the models can predict the fracture locations. Efforts have been made to create subject specific rib models for fracture prediction, with mixed results. The aim of this study is to evaluate if subject-specific finite element (FE) rib models, based on state-of-the-art clinical CT data combined with subject-specific material data, can predict rib stiffness and fracture location in anterior-posterior rib bending.Method: High resolution clinical CT data was used to generate detailed subject-specific geometry for twelve FE models of the sixth rib. The cortical bone periosteal and endosteal surfaces were estimated based on a previously calibrated cortical bone mapping algorithm. The cortical and the trabecular bone were modeled using a hexa-block algorithm. The isotropic material model for the cortical bone in each rib model was assigned subject-specific material data based on tension coupon tests. Two different modeling strategies were used for the trabecular bone.The capability of the FE model to predict fracture location was carried out by modeling physical dynamic anterior-posterior rib bending tests. The rib model predictions were directly compared to the results from the tests. The predicted force-displacement time history, strain measurements at four locations, and rotation of the rib ends were compared to the results from the physical tests by means of CORA analysis. Rib fracture location in the FE model was estimated as the position for the element with the highest first principle strain at the time corresponding to rib fracture in the physical test.Results: Seven out of the twelve rib models predicted the fracture locations (at least for one of the trabecular modeling strategies) and had a force-displacement CORA score above 0.65. The other five rib models, had either a poor force-displacement CORA response or a poor fracture location prediction. It was observed that the stress-strain response for the coupon test for these five ribs showed significantly lower Young's modulus, yield stress, and elongation at fracture compared to the other seven ribs.Conclusion: This study indicates that rib fracture location can be predicted for subject specific rib models based on high resolution CT, when loaded in anterior-posterior bending, as long as the rib's cortical cortex is of sufficient thickness and has limited porosity. This study provides guidelines for further enhancements of rib modeling for fracture location prediction with HBMs.


Accidents, Traffic , Models, Biological , Rib Fractures/etiology , Ribs/physiopathology , Finite Element Analysis , Humans , Mechanical Phenomena , Rib Fractures/diagnostic imaging , Rib Fractures/physiopathology , Ribs/diagnostic imaging , Rotation , Tomography, X-Ray Computed
...