Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Biomedicines ; 12(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927549

ABSTRACT

Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.

2.
Int J Oncol ; 65(1)2024 07.
Article in English | MEDLINE | ID: mdl-38847231

ABSTRACT

Signal recognition particles (SRPs) are essential for regulating intracellular protein transport and secretion. Patients with tumors with high SRP9 expression tend to have a poorer overall survival. However, to the best of our knowledge, no reports have described the relationship between SRP9 localization and prognosis in pancreatic cancer. Thus, the present study aimed to investigate this relationship. Immunohistochemical staining for SRP9 using excised specimens from pancreatic cancer surgery cases without preoperative chemotherapy or radiotherapy showed that SRP9 was preferentially expressed in the nucleus of the cancerous regions in some cases, which was hardly detected in other cases, indicating that SRP9 was transported to the nucleus in the former cases. To compare the prognosis of patients with SRP9 nuclear translocation, patients were divided into two groups: Those with a nuclear translocation rate of >50% and those with a nuclear translocation rate of ≤50%. The nuclear translocation rate of >50% group had a significantly better recurrence­free survival than the nuclear translocation rate of ≤50% group (P=0.037). Subsequent in vitro experiments were conducted; notably, the nuclear translocation rate of SRP9 was reduced under amino acid­deficient conditions, suggesting that multiple factors are involved in this phenomenon. To further study the function of SRP9 nuclear translocation, in vitro experiments were performed by introducing SRP9 splicing variants (v1 and v2) and their deletion mutants lacking C­terminal regions into MiaPaCa pancreatic cancer cells. The results demonstrated that both splicing variants showed nuclear translocation regardless of the C­terminal deletions, suggesting the role of the N­terminal regions. Given that SRP9 is an RNA­binding protein, the study of RNA immunoprecipitation revealed that signaling pathways involved in cancer progression and protein translation were downregulated in nuclear­translocated v1 and v2. Undoubtedly, further studies of the nuclear translocation of SRP9 will open an avenue to optimize the precise evaluation and therapeutic control of pancreatic cancer.


Subject(s)
Cell Nucleus , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Prognosis , Male , Female , Cell Nucleus/metabolism , Middle Aged , Aged , Cell Line, Tumor , Signal Recognition Particle/metabolism , Signal Recognition Particle/genetics , Active Transport, Cell Nucleus , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Adult , Gene Expression Regulation, Neoplastic
3.
Cancer Sci ; 115(7): 2360-2370, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38659235

ABSTRACT

N6-methyladenosine (m6A) is an RNA modification involved in RNA processing and widely found in transcripts. In cancer cells, m6A is upregulated, contributing to their malignant transformation. In this study, we analyzed gene expression and m6A modification in cancer tissues, ducts, and acinar cells derived from pancreatic cancer patients using MeRIP-seq. We found that dozens of RNAs highly modified by m6A were detected in cancer tissues compared with ducts and acinar cells. Among them, the m6A-activated mRNA TCEAL8 was observed, for the first time, as a potential marker gene in pancreatic cancer. Spatially resolved transcriptomic analysis showed that TCEAL8 was highly expressed in specific cells, and activation of cancer-related signaling pathways was observed relative to TCEAL8-negative cells. Furthermore, among TCEAL8-positive cells, the cells expressing the m6A-modifying enzyme gene METTL3 showed co-activation of Notch and mTOR signaling, also known to be involved in cancer metastasis. Overall, these results suggest that m6A-activated TCEAL8 is a novel marker gene involved in the malignant transformation of pancreatic cancer.


Subject(s)
Adenosine , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Methyltransferases , Pancreatic Neoplasms , RNA, Messenger , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cell Line, Tumor , Receptors, Notch/genetics , Receptors, Notch/metabolism , Gene Expression Profiling/methods
4.
Cancer Sci ; 115(7): 2473-2485, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679799

ABSTRACT

Inflammatory bowel disease (IBD) is one of the intractable diseases. Nutritional components associated with IBD have been identified, and it is known that excessive methionine intake exacerbates inflammation, and that tryptophan metabolism is involved in inflammation. Analysis of the gut microbiota has also progressed, where Lactobacillus regulate immune cells in the intestine and suppress inflammation. However, whether the methionine and tryptophan metabolic pathways affect the growth of intestinal Lactobacillus is unknown. Here we show how transient methionine, tryptophan, and niacin deficiency affects the host and gut microbiota in mouse models of colitis (induced by dextran sodium sulfate) fed a methionine-deficient diet (1K), tryptophan and niacin-deficient diet (2K), or methionine, tryptophan, and niacin-deficient diet (3K). These diets induced body weight decrease and 16S rRNA analysis of mouse feces revealed the alterations in the gut microbiota, leading to a dramatic increase in the proportion of Lactobacillus in mice. Intestinal RNA sequencing data confirmed that the expression of several serine proteases and fat-metabolizing enzymes were elevated in mice fed with methionine, tryptophan, and niacin (MTN) deficient diet. In addition, one-carbon metabolism and peroxisome proliferator-activated receptor (PPAR) pathway activation were also induced with MTN deficiency. Furthermore, changes in the expression of various immune-related cytokines were observed. These results indicate that methionine, tryptophan, and niacin metabolisms are important for the composition of intestinal bacteria and host immunity. Taken together, MTN deficiencies may serve as a Great Reset of gut microbiota and host gene expression to return to good health.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Methionine , Niacin , Tryptophan , Animals , Methionine/deficiency , Methionine/metabolism , Niacin/metabolism , Niacin/deficiency , Mice , Tryptophan/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/immunology , Proteolysis , Male , Disease Models, Animal , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Colitis/metabolism , Colitis/microbiology , Colitis/chemically induced , Colitis/immunology , Lactobacillus/metabolism
5.
Proc Natl Acad Sci U S A ; 121(12): e2312322121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478683

ABSTRACT

RN7SL1 (RNA component of signal recognition particle 7SL1), a component of the signal recognition particle, is a non-coding RNA possessing a small ORF (smORF). However, whether it is translated into peptides is unknown. Here, we generated the RN7SL1-Green Fluorescent Protein (GFP) gene, in which the smORF of RN7SL1 was replaced by GFP, introduced it into 293T cells, and observed cells emitting GFP fluorescence. Furthermore, RNA-seq of GFP-positive cells revealed that they were in an oncogenic state, suggesting that RN7SL1 smORF may be translated under special conditions.


Subject(s)
Peptides , Signal Recognition Particle , Signal Recognition Particle/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Peptides/metabolism
6.
Oncol Lett ; 27(3): 113, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38304169

ABSTRACT

Pancreatic cancer, one of the most fatal types of human cancers, includes several non-epithelial and stromal components, such as activated fibroblasts, vascular cells, neural cells and immune cells, that are involved in different cancers. Vascular endothelial cell growth factor 165 receptors 1 [neuropilin-1 (NRP-1)] and 2 (NRP-2) play a role in the biological behaviors of pancreatic cancer and may appear as potential therapeutic targets. The NRP family of proteins serve as co-receptors for vascular endothelial growth factor, transforming growth factor ß, hepatocyte growth factor, fibroblast growth factor, semaphorin 3, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor. Investigations of mechanisms that involve the NRP family of proteins may help develop novel approaches for overcoming therapy resistance in pancreatic cancer. The present review aimed to provide an in-depth exploration of the multifaceted roles of the NRP family of proteins in pancreatic cancer, including recent findings from single-cell analysis conducted within the context of pancreatic adenocarcinoma, which revealed the intricate involvement of NRP proteins at the cellular level. Through these efforts, the present study endeavored to further reveal their relationships with different biological processes and their potential as therapeutic targets in various treatment modalities, offering novel perspectives and directions for the treatment of pancreatic cancer.

7.
Gan To Kagaku Ryoho ; 51(1): 14-23, 2024 Jan.
Article in Japanese | MEDLINE | ID: mdl-38247085

ABSTRACT

This review focuses on cancer, a serious health issue in modern society, and explores the advancements and applications of single-cell RNA sequencing(scRNA-seq)as an advanced technique for understanding its pathobiology. Cancer often arises due to genetic mutations or epigenetic changes, which manifest through fluctuations in gene expression. Therefore, transcriptome information(transcriptomics)plays an indispensable role in cancer research. In this field, there has been a shift from hybridization to next-generation sequencing, and the emergence of scRNA-seq technology enables the analysis of dynamic gene expression properties at the single-cell level. Consequently, significant advancements have been made in cancer research, including understanding complex intercellular variations and interactions, as well as revealing the roles of the tumor microenvironment and immune cells, and the contribution of non-coding RNAs. This review focuses on the progress and applications of scRNA-seq technology, providing an overview of new insights and prospects for cancer research and therapy.


Subject(s)
Epigenesis, Genetic , Neoplasms , Humans , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Mutation , Sequence Analysis, RNA , Neoplasms/genetics , Neoplasms/therapy
8.
Cancer Sci ; 115(3): 723-733, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263895

ABSTRACT

RNA modifications, including the renowned m6A, have recently garnered significant attention. This chemical alteration, present in mRNA, exerts a profound influence on protein expression levels by affecting splicing, nuclear export, stability, translation, and other critical processes. Although the role of RNA methylation in the pathogenesis and progression of IBD and colorectal cancer has been reported, many aspects remain unresolved. In this comprehensive review, we present recent studies on RNA methylation in IBD and colorectal cancer, with a particular focus on m6A and its regulators. We highlight the pivotal role of m6A in the pathogenesis of IBD and colorectal cancer and explore the potential applications of m6A modifications in the diagnosis and treatment of these diseases.


Subject(s)
Colorectal Neoplasms , Inflammatory Bowel Diseases , Humans , RNA Methylation , Inflammatory Bowel Diseases/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , Colorectal Neoplasms/genetics , RNA
9.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139171

ABSTRACT

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Subject(s)
Neoplasms , Repressor Proteins , Humans , RNA Splicing Factors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Alternative Splicing , Neoplasms/drug therapy , Neoplasms/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism
10.
Brief Funct Genomics ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37791426

ABSTRACT

The cases of inflammatory bowel disease (IBD) are increasing rapidly around the world. Due to the multifactorial causes of IBD, there is an urgent need to understand the pathogenesis of IBD. As such, the usage of high-throughput techniques to profile genetic mutations, microbiome environments, transcriptome and proteome (e.g. lipidome) is increasing to understand the molecular changes associated with IBD, including two major etiologies of IBD: Crohn disease (CD) and ulcerative colitis (UC). In the case of transcriptome data, RNA sequencing (RNA-seq) technique is used frequently. However, only protein-coding genes are analyzed, leaving behind all other RNAs, including non-coding RNAs (ncRNAs) to be unexplored. Among these ncRNAs, long non-coding RNAs (lncRNAs) may hold keys to understand the pathogenesis of IBD as lncRNAs are expressed in a cell/tissue-specific manner and dysregulated in a disease, such as IBD. However, it is rare that RNA-seq data are analyzed for lncRNAs. To fill this gap in knowledge, we re-analyzed RNA-seq data of CD and UC patients compared with the healthy donors to dissect the expression profiles of lncRNA genes. As inflammation plays key roles in the pathogenesis of IBD, we conducted loss-of-function experiments to provide functional data of IBD-specific lncRNA, lung cancer associated transcript 1 (LUCAT1), in an in vitro model of macrophage polarization. To further facilitate the lncRNA research in IBD, we built a web database, IBDB (https://ibd-db.shinyapps.io/IBDB/), to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in IBD patients compared with healthy donors.

11.
Biomedicines ; 11(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37626731

ABSTRACT

Short non-coding RNAs, miRNAs, play roles in the control of cell growth and differentiation in cancer. Reportedly, the introduction of miRNAs could reduce the biologically malignant behavior of cancer cells, suggesting a possible use as therapeutic reagents. Given that the forced expression of several miRNAs, including miR-302, results in the cellular reprograming of human and mouse cells, which is similar to the effects of the transcription factors Oct4, Sox2, Klf4, and c-Myc, this suggests that the selective introduction of several miRNAs will be able to achieve anti-cancer effects at the epigenetic and metabolic levels. In this review article, we bring together the recent advances made in studies of microRNA-based therapeutic approaches to therapy-resistant cancers, especially in gastrointestinal organs.

12.
Oncol Lett ; 26(2): 336, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37427348

ABSTRACT

Pancreatic cancer stem cells (CSCs) play a key role in the initiation and progression of pancreatic adenocarcinoma (PDAC). CSCs are responsible for resistance to chemotherapy and radiation, and for cancer metastasis. Recent studies have indicated that RNA methylation, a type of RNA modification, predominantly occurring as m6A methylation, plays an important role in controlling the stemness of cancer cells, therapeutic resistance against chemotherapy and radiation therapy, and their overall relevance to a patient's prognosis. CSCs regulate various behaviors of cancer through cell-cell communication by secreting factors, through their receptors, and through signal transduction. Recent studies have shown that RNA methylation is involved in the biology of the heterogeneity of PDAC. The present review provides an update on the current understanding of RNA modification-based therapeutic targets against deleterious PDAC. Several key pathways and agents that can specifically target CSCs have been identified, thus providing novel insights into the early diagnosis and efficient treatment of PDAC.

13.
Cancer Sci ; 114(9): 3487-3495, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480223

ABSTRACT

Desmoplastic reaction is a fibrosis reaction that is characterized by a large amount of dense extracellular matrix (ECM) and dense fibrous stroma. Fibrotic stroma around the tumor has several different components, including myofibroblasts, collagen, and other ECM molecules. This stromal reaction is a natural response to the tissue injury process, and fibrosis formation is a key factor in pancreatic cancer development. The fibrotic stroma of pancreatic cancer is associated with tumor progression, metastasis, and poor prognosis. Reportedly, multiple processes are involved in fibrosis, which is largely associated with the upregulation of various cytokines, chemokines, matrix metalloproteinases, and other growth factors that promote tumor growth and metastasis. Fibrosis is also associated with immunosuppressive cell recruitment, such as regulatory T cells (Tregs) with suppressing function to antitumor immunity. Further, dense fibrosis restricts the flow of nutrients and oxygen to the tumor cells, which can contribute to drug resistance. Furthermore, the dense collagen matrix can act as a physical barrier to block the entry of drugs into the tumor, thereby further contributing to drug resistance. Thus, understanding the mechanism of desmoplastic reaction and fibrosis in pancreatic cancer will open an avenue to innovative medicine and improve the prognosis of patients suffering from this disease.


Subject(s)
Pancreatic Neoplasms , Humans , Pancreas , Extracellular Matrix , Cytokines , Pancreatic Neoplasms
14.
Noncoding RNA ; 9(3)2023 May 08.
Article in English | MEDLINE | ID: mdl-37218990

ABSTRACT

Type II diabetes (T2D) is a growing health problem worldwide due to increased levels of obesity and can lead to other life-threatening diseases, such as cardiovascular and kidney diseases. As the number of individuals diagnosed with T2D rises, there is an urgent need to understand the pathogenesis of the disease in order to prevent further harm to the body caused by elevated blood glucose levels. Recent advances in long non-coding RNA (lncRNA) research may provide insights into the pathogenesis of T2D. Although lncRNAs can be readily detected in RNA sequencing (RNA-seq) data, most published datasets of T2D patients compared to healthy donors focus only on protein-coding genes, leaving lncRNAs to be undiscovered and understudied. To address this knowledge gap, we performed a secondary analysis of published RNA-seq data of T2D patients and of patients with related health complications to systematically analyze the expression changes of lncRNA genes in relation to the protein-coding genes. Since immune cells play important roles in T2D, we conducted loss-of-function experiments to provide functional data on the T2D-related lncRNA USP30-AS1, using an in vitro model of pro-inflammatory macrophage activation. To facilitate lncRNA research in T2D, we developed a web application, T2DB, to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in T2D patients compared to healthy donors or subjects without T2D.

15.
Br J Cancer ; 128(12): 2206-2217, 2023 06.
Article in English | MEDLINE | ID: mdl-37076565

ABSTRACT

BACKGROUND: Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity. METHODS: We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability. RESULTS: We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival. CONCLUSIONS: We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Proteomics , Amino Acids, Branched-Chain , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/genetics , Transaminases
16.
Br J Cancer ; 128(10): 1828-1837, 2023 05.
Article in English | MEDLINE | ID: mdl-36869093

ABSTRACT

BACKGROUND: Tissue-resident memory T (Trm) cells are associated with cytotoxicity not only in viral infection and autoimmune disease pathologies but also in many cancers. Tumour-infiltrating CD103+ Trm cells predominantly comprise CD8 T cells that express cytotoxic activation and immune checkpoint molecules called exhausted markers. This study aimed to investigate the role of Trm in colorectal cancer (CRC) and characterise the cancer-specific Trm. METHODS: Immunochemical staining with anti-CD8 and anti-CD103 antibodies for resected CRC tissues was used to identify the tumour-infiltrating Trm cells. The Kaplan-Meier estimator was used to evaluate the prognostic significance. Cells immune to CRC were targeted for single-cell RNA-seq analysis to characterise cancer-specific Trm cells in CRC. RESULTS: The number of CD103+/CD8+ tumour-infiltrating lymphocytes (TILs) was a favourable prognostic and predictive factor of the overall survival and recurrence-free survival in patients with CRC. Single-cell RNA-seq analysis of 17,257 CRC-infiltrating immune cells revealed a more increased zinc finger protein 683 (ZNF683) expression in cancer Trm cells than in noncancer Trm cells and in high-infiltrating Trm cells than low-infiltrating Trm in cancer, with an upregulated T-cell receptor (TCR)- and interferon-γ (IFN-γ) signalling-related gene expression in ZNF683+ Trm cells. CONCLUSIONS: The number of CD103+/CD8+ TILs is a prognostic predictive factor in CRC. In addition, we identified the ZNF683 expression as one of the candidate markers of cancer-specific Trm cells. IFN-γ and TCR signalling and ZNF683 expression are involved in Trm cell activation in tumours and are promising targets for cancer immunity regulation.


Subject(s)
Colorectal Neoplasms , Immunologic Memory , Transcription Factors , Humans , CD8-Positive T-Lymphocytes , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating , Memory T Cells , Prognosis , Transcription Factors/metabolism
17.
Front Physiol ; 13: 1025923, 2022.
Article in English | MEDLINE | ID: mdl-36452037

ABSTRACT

An international project on the human genome revealed that various RNAs (e.g., messenger RNAs, microRNAs, and long noncoding RNAs [lncRNAs] and their subclass circular RNA [circRNA)) are involved in the pathogenesis of different human diseases, including cancer. Recent studies have highlighted the critical roles of lncRNAs and circRNA in pancreatic ductal adenocarcinoma (PDAC), especially in the epithelial-mesenchymal transition, a phenomenon regulating cancer metastasis. Growing research in this field has indicated that the tertiary structure of lncRNAs supposedly regulates biological function via RNA-RNA or RNA-protein associations, aiding early diagnosis and therapy selection for various diseases, including cancer. Here we describe the emerging roles of ncRNAs in PDAC and highlight how these ncRNAs can be used to detect and control this intractable cancer.

19.
Biomolecules ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36291712

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is caused by genetic mutations in four genes: KRAS proto-oncogene and GTPase (KRAS), tumor protein P53 (TP53), cyclin-dependent kinase inhibitor 2A (CDKN2A), and mothers against decapentaplegic homolog 4 (SMAD4), also called the big 4. The changes in tumors are very complex, making their characterization in the early stages challenging. Therefore, the development of innovative therapeutic approaches is desirable. The key to overcoming PDAC is diagnosing it in the early stages. Therefore, recent studies have investigated the multifaced characteristics of PDAC, which includes cancer cell metabolism, mesenchymal cells including cancer-associated fibroblasts and immune cells, and metagenomics, which extend to characterize various biomolecules including RNAs and volatile organic compounds. Various alterations in the KRAS-dependent as well as KRAS-independent pathways are involved in the refractoriness of PDAC. The optimal combination of these new technologies is expected to help treat intractable pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Volatile Organic Compounds , Humans , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Mutation , DNA/therapeutic use , Cyclin-Dependent Kinases/metabolism , Pancreatic Neoplasms
20.
Biomedicines ; 10(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35885000

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by damage to the intestinal mucosa, which is caused by a combination of factors. These include genetic and epigenetic alterations, environmental influence, microorganism interactions, and immune conditions. Some populations with IBD show a cancer-prone phenotype. Recent studies have provided insight into the involvement of RNA modifications in the specific pathogenesis of IBD through regulation of RNA biology in epithelial and immune cells. Studies of several RNA modification-targeting reagents have shown preferable outcomes in patients with colitis. Here, we note a new awareness of RNA modification in the targeting of IBD and related diseases, which will contribute to early diagnosis, disease monitoring, and possible control by innovative therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL