Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
R Soc Open Sci ; 11(4): 231952, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38660601

ABSTRACT

Despite remarkable progress in medical sciences, modern man is still fighting the battle against cancer. In 2022, only in the USA, 640 000 deaths and 2 370 000 patients were reported because of cancer. Chemotherapy is the most widely used for cancer treatments. However, chemotherapeutics have severe physicochemical side effects. Therefore, we have prepared poly(amididoamine) dendrimeric carrageenan (CG), sodium alginate (SA) and poly(vinyl alcohol) (PVA) hydrogels by using solution casting methodology. The constituents of hydrogels were cross-linked by mutable quantity of 3-aminopropyl(diethoxy)methyl silane (APDMS). Hydrogels were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscope and atomic force microscopy. Hydrogels exhibited higher swelling volumes in 5-7 pH range. In vitro biodegradation in ribonuclease-A solution and cytocompatibility analysis against DF-1 fibroblasts established their biodegradable and non-toxic nature, which enables them as a suitable carrier for chemotherapeutic compounds. Hence, methotrexate (MTX) as a model drug was loaded on CAP-8 hydrogel and its release was detected by the UV-visible spectrophotometer in phosphate-buffered saline (PBS) solution. In 13.5 h, 81.25% and 77.23% of MTX were released at pH 7.4 (blood pH) and 5.3 (tumour pH) in PBS, respectively. MTX was released by super case II mechanism and best fitted to zero-order and Korsmeyer-Peppas model. The synthesized APDMS cross-linked CG/SA/PVA dendrimeric hydrogels could be an efficient model platform for the effective delivery of MTX in cancer treatments.

2.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368975

ABSTRACT

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Subject(s)
Amantadine , Thiourea , Humans , Thiourea/pharmacology , Thiourea/chemistry , HEK293 Cells , Molecular Docking Simulation , Amantadine/pharmacology , DNA/chemistry , Pancreatic Elastase
3.
RSC Adv ; 14(2): 1018-1033, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174269

ABSTRACT

In the present work, a small library of novel pyrazolinyl-acyl thiourea (5a-j) was designed and synthesized through a multistep sequence and the synthesized compounds were screened for their antifungal, antibacterial and antioxidant activities as well as urease, amylase and α-glucosidase inhibitory activities. The synthesized series (5a-o) was characterized using a combination of spectroscopic techniques, including FT-IR, 1H NMR and 13C NMR. All compounds (5a-j) were found to have significant potency against urease, α-glucosidase, α-amylase, and DPPH. The synthesized compounds were also screened for potential antibacterial and anti-fungal inhibition activities. IC50 values for all the prepared compounds for urease, α-glucosidase, amylase, and DPPH inhibition were determined and derivatives 5b and 5g were found to be the most potent urease inhibitors with IC50 values of 54.2 ± 0.32 and 43.6 ± 0.25 µM, respectively. Whilst compound 5b (IC50 = 68.3 ± 0.11 µM) is a potent α-glucosidase inhibitor, compound 5f (90.3 ± 1.08 µM) is a potent amylase inhibitor and compound 5b (103.4 ± 1.15 µM) is a potent antioxidant. The different substitutions on the phenyl ring were the basis for structure-activity relationship (SAR) study. The molecular docking study was performed for the confirmation of binding interactions.

4.
PLoS One ; 19(1): e0291939, 2024.
Article in English | MEDLINE | ID: mdl-38227608

ABSTRACT

Fungal pathogens are one of the major reasons for biotic stress on rice (Oryza sativa L.), causing severe productivity losses every year. Breeding for host resistance is a mainstay of rice disease management, but conventional development of commercial resistant varieties is often slow. In contrast, the development of disease resistance by targeted genome manipulation has the potential to deliver resistant varieties more rapidly. The present study reports the first cloning of a synthetic maize chitinase 1 gene and its insertion in rice cv. (Basmati 385) via Agrobacterium-mediated transformation to confer resistance to the rice blast pathogen, Pyricularia oryzae. Several factors for transformation were optimized; we found that 4-week-old calli and an infection time of 15 minutes with Agrobacterium before colonization on co-cultivation media were the best-suited conditions. Moreover, 300 µM of acetosyringone in co-cultivation media for two days was exceptional in achieving the highest callus transformation frequency. Transgenic lines were analyzed using molecular and functional techniques. Successful integration of the gene into rice lines was confirmed by polymerase chain reaction with primer sets specific to chitinase and hpt genes. Furthermore, real-time PCR analysis of transformants indicated a strong association between transgene expression and elevated levels of resistance to rice blast. Functional validation of the integrated gene was performed by a detached leaf bioassay, which validated the efficacy of chitinase-mediated resistance in all transgenic Basmati 385 plants with variable levels of enhanced resistance against the P. oryzae. We concluded that overexpression of the maize chitinase 1 gene in Basmati 385 improved resistance against the pathogen. These findings will add new options to resistant germplasm resources for disease resistance breeding. The maize chitinase 1 gene demonstrated potential for genetic improvement of rice varieties against biotic stresses in future transformation programs.


Subject(s)
Ascomycota , Chitinases , Oryza , Disease Resistance/genetics , Zea mays/genetics , Zea mays/metabolism , Plant Breeding , Plants, Genetically Modified/metabolism , Agrobacterium/genetics , Cloning, Molecular , Chitinases/genetics , Chitinases/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
5.
PLoS One ; 18(11): e0286349, 2023.
Article in English | MEDLINE | ID: mdl-37910530

ABSTRACT

OBJECTIVE: Berberis lycium is an indigenous plant of Pakistan that is known for its medicinal properties. In the current study, we investigated the anti-Alzheimer's effect of berberine isolated from Berberis lycium. METHODS: Root extract of B. lycium was subjected to acetylcholinesterase inhibition assay and column chromatography for bioassays guided isolation of a compound. The neuroprotective and memory improving effects of isolated compound were evaluated by aluminium chloride induced Alzheimer's disease rat model, elevated plus maze (EPM) and Morris water maze (MWM) tests., Levels of dopamine and serotonin in rats brains were determined using HPLC. Moreover, western blot and docking were performed to determine interaction between berberine and ß-secretase. RESULTS: During fractionation, ethyl acetate and methanol (3:7) fraction was collected from solvent mixture of ethyl acetate and methanol. This fraction showed the highest anti-acetylcholinesterase activity and was alkaloid positive. The results of TLC and HPLC analysis indicated the presence of the isolated compound as berberine. Additionally, the confirmation of isolated compound as berberine was carried out using FTIR and NMR analysis. In vivo EPM and MWM tests showed improved memory patterns after berberine treatment in Alzheimer's disease model. The levels of dopamine, serotonin and activity of antioxidant enzymes were significantly (p<0.05) enhanced in brain tissue homogenates of berberine treated group. This was supported by decreased expression of ß-secretase in berberine treated rat brain homogenates and good binding affinity of berberine with ß-secretase in docking studies. Binding energies for interaction of ß-secretase with berberine and drug Rivastigmine is -7.0 kcal/mol and -5.8 kcal/mol respectively representing the strong interactions. The results of docked complex of secretase with berberine and Rivastigmine was carried out using Gromacs which showed significant stability of complex in terms of RMSD and radius of gyration. Overall, the study presents berberine as a potential drug against Alzheimer's disease by providing evidence of its effects in improving memory, neurotransmitter levels and reducing ß-secretase expression in the Alzheimer's disease model.


Subject(s)
Alzheimer Disease , Berberine , Berberis , Lycium , Neuroprotective Agents , Rats , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberis/chemistry , Berberis/metabolism , Aluminum Chloride , Lycium/metabolism , Molecular Docking Simulation , Rivastigmine/pharmacology , Rivastigmine/therapeutic use , Acetylcholinesterase/metabolism , Amyloid Precursor Protein Secretases/metabolism , Dopamine , Methanol , Serotonin/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
6.
RSC Adv ; 13(36): 24988-25001, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37614781

ABSTRACT

A series of ten novel compounds were synthesized by incorporating a 1,3 thiazole core into amantadine and their structures were validated using different analytical and spectral methods such as FTIR, EI-MS, 1H NMR, and 13C NMR. The antibacterial and enzyme inhibitory properties of these newly synthesized compounds were evaluated. Remarkably, the compounds exhibited significant antibacterial activity against Escherichia coli and Bacillus subtilis. Additionally, the in vitro inhibitory activities of the synthesized compounds, against α-amylase, α-glucosidase, and urease were investigated. Among the tested compounds, compound 6d demonstrated potent and selective inhibition of α-amylase IC50 = 97.37 ± 1.52 µM, while acarbose was used as positive control and exhibited IC50 = 5.17 ± 0.25 µM. Compound 6d and 6e exhibited prominent inhibition against α-glucosidase IC50 = 38.73 ± 0.80 µM and 41.63 ± 0.26 µM respectively. Furthermore, compound 6d inhibited urease with exceptional efficacy IC50 = 32.76 µM, while positive control thiourea showed more prominent activity having IC50 = 1.334 µM. Molecular docking studies disclosed the binding mechanism and affinity of these new inhibitors within the binding sites of various amino acids. To investigate the association between molecular structural characteristics and inhibitory actions of synthesized derivatives, preliminary structure-activity relationship (SAR) studies were performed. These findings indicated that compounds 6a, 6c, 6d and 6e are potential candidates for hit-to-lead follow-up in the drug-discovery process for treating diabetes and hyperglycemia.

7.
Cancer Treat Res ; 185: 15-47, 2023.
Article in English | MEDLINE | ID: mdl-37306902

ABSTRACT

In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell's genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.


Subject(s)
Neoplasms , Humans , Genomics
8.
RSC Adv ; 13(18): 11982-11999, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37077261

ABSTRACT

Two novel benzimidazole ligands (E)-2-((4-(1H-benzo[d]imidazole-2-yl)phenylimino)methyl)-6-bromo-4-chlorophenol (L1) and (E)-1-((4-(1H-benzo[d]imidazole-2-yl)phenylimino)methyl)naphthalene-2-ol (L2) with their corresponding Cu(ii), Ni(ii), Pd(ii) and Zn(ii) complexes were designed and synthesized. The compounds were characterized by elemental, IR, and NMR (1H & 13C) spectral analyses. Molecular masses were determined by ESI-mass spectrometry, and the structure of ligand L1 was confirmed by single crystal X-ray diffraction analysis. Molecular docking was carried out for the theoretical investigation of DNA binding interactions. The results obtained were verified experimentally by UV/Visible absorption spectroscopy in conjunction with DNA thermal denaturation studies. It was observed that ligands (L1 and L2) and complexes (1-8) were moderate to strong DNA binders, as evident from the binding constants (K b). The value was found to be highest for complex 2 (3.27 × 105 M-1) and lowest for 5 (6.40 × 103 M-1). A cell line study revealed that breast cancer cells were less viable to the synthesized compounds compared to that of standard drugs, cisplatin and doxorubicin, at the same concentration. The compounds were also screened for in vitro antibacterial activity for which complex 2 showed a promising broad-spectrum effect against all tested strains of bacteria, almost in the proximity of the reference drug kanamycin, while the rest of the compounds displayed activity against selected strains.

9.
Molecules ; 28(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985680

ABSTRACT

Bis-acyl-thiourea derivatives, namely N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N'-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds' interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound-DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40-120 µM.


Subject(s)
Brain Neoplasms , Urease , Humans , Molecular Docking Simulation , HEK293 Cells , Anti-Bacterial Agents/pharmacology , DNA/chemistry , Thiourea/chemistry , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology
10.
Biomed Res Int ; 2023: 1725638, 2023.
Article in English | MEDLINE | ID: mdl-36654869

ABSTRACT

Phoenix dactylifera is known for medicinal importance due to its antioxidant, antidiabetic, antidepressant, and anti-inflammatory properties. This study is aimed at evaluating the effect of P. dactylifera seeds to cure Alzheimer's disease (AD). AD was induced in the rats with streptozotocin + aluminium chloride followed by treatment of methanolic extract of P. dactylifera seeds. The blood glucose levels were determined at regular intervals, which showed a prominent decrease in the extracts treated group. Behavior tests, including the Elevated Plus Maze (EPM) test and Morris Water Maze (MWM) test, were used to evaluate memory patterns in rats. The results indicated that extract-treated rats significantly improved memory behavior compared to the diseased group. After dissection, the serum electrolytes, antioxidant enzymes, and choline esterase enzymes were measured in different organs. The serum parameters creatinine, urea, and bilirubin increased after extract treatment. Similarly, the level of antioxidant enzymes like peroxidases (POD), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS) in the extract-treated group showed improved results that were close to the normal control group. The enzyme (lipase, insulin, amylase, and acetylcholine) levels were found enhanced in extract groups as compared to diseased rats. High-performance liquid chromatography (HPLC) was used to determine the level of dopamine and serotonin neurotransmitters, which were increased significantly for P. dactylifera seeds with values of 0.18 µg/mg tissue and 0.56 µg/mg tissue, respectively. Overall, results showed that P. dactylifera seeds proved to be quite efficient in improving the memory and behavior of treated rats. The antioxidants and enzymes were also increased; therefore, it may be a potential candidate for treating AD.


Subject(s)
Alzheimer Disease , Phoeniceae , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Phoeniceae/chemistry , Streptozocin/pharmacology , Aluminum Chloride/pharmacology , Rats, Wistar , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glutathione/metabolism , Oxidative Stress
11.
Front Chem ; 10: 992701, 2022.
Article in English | MEDLINE | ID: mdl-36226116

ABSTRACT

The crystal structure of N-((4-acetylphenyl)carbamothioyl)pivalamide (3) was synthesized by inert refluxing pivaloyl isothiocyanate (2) and 4-aminoacetophenone in dry acetone. The spectroscopic characterization (1H-NMR, 13CNMR, FT-IR) and single crystal assays determined the structure of synthesized compound (3). Systematic experimental and theoretical studies were conducted to determine the molecular characteristics of the synthesized crystal. The biological examination of (3) was conducted against a variety of enzymes i.e., acetyl cholinesterase (AChE), butyl cholinesterase (BChE), alpha amylase, and urease enzyme were evaluated. The crystal exhibited approximately 85% enzyme inhibition activity against BChE and AChE, but only 73.8 % and 57.9% inhibition activity against urease and alpha amylase was observed respectively. The theoretical calculations were conducted using density functional theory studies (DFTs) with the 6-31G (d, p) basis set and B3LYP functional correlation. The Frontier molecular orbital analysis revealed that the HOMO/LUMO energy gap was smaller, which corresponds to the molecule's reactivity. In terms of reactivity, the chemical softness value was found to be in good agreement with experimental values. In Crystal structure analysis, the intramolecular N-H•••O hydrogen bond generates a S 6) ring motif and N-H•••O interactions exist in crystal structure between the centroids of neighboring parallel aromatic (C4-C9) rings with a centroid to centroid distance of 3.9766 (7)Å. These intermolecular interactions were useful in structural stabilization. The Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis of the crystal structure the most substantial contributions to the crystal packing are from H ••• O and H ••• N/N ••• H interactions. Molecular docking studies were conducted to evaluate the binding orientation of synthesized crystal with multiple targets. The compound exhibited stronger interactions with AChE and BChE with binding energies of -7.5 and -7.6 kcal/mol, respectively. On the basis of in-vitro and in-silico findings, it is deduced that N-((4-acetylphenyl)carbamothioyl)pivalamide 3) possesses reactive and potent multiple target inhibitory properties.

12.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36290588

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with unmet medical need. This investigation consisted of testing a range of ethanolic ethnomedicinal plant extracts (n = 18) traditionally used in the treatment of disorders such as anxiety, delirium, and memory loss. They were then screened for in vitro inhibitory activity against acetylcholinesterase (AChE), butylcholinesterase (BuChE), beta-secretase 1/beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), and antioxidant activities. Plants with potent activities were further characterised using a recently developed in vivo model of AD, Globodera pallida. The ability of phytoextracts to protect this organism against amyloid-beta Aß (1-42) exposure was assessed by measuring chemosensing, survival rate, production of reactive oxygen species (ROS), and antioxidant responses. Extracts (n = 5) from Juglans regia (leaves), Ellettaria cardamomum (seeds), Cinnamomum zeylanicum (bark), Salvia officinalis (leaves/flowers), and Hypericum perforatum (flowers) exerted concentration-dependent inhibitory activities against AChE and BuChE. Three of these plant extracts (i.e., J. regia, E. cardamomum, and S. officinalis) possessed strong concentration-dependent inhibitory activity against BACE1. Furthermore, the five selected medicinal plant extracts not only enhanced significantly (p < 0.05) the nematode's chemosensing, survival rate, and antioxidant responses (i.e., anti-ROS production, mitochondrial reductase activity, oxidized glutathione (GSSG) to reduced glutathione (GSH) ratio), but also greatly restored (p < 0.05) in a concentration-dependent manner the Aß (1-42)-induced deleterious changes in these same parameters. In brief, this investigation highlights plant extracts with strong anti-AD activities which could be trialled as novel therapeutic supplements or undergo further biodiscovery research.

13.
Molecules ; 27(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889458

ABSTRACT

In the current study, the anti-inflammatory and analgesic potential of Alnus nitida (leaves and fruits) was evaluated in the Sprague-Dawley rat. Traditionally, A. nitida was used for the treatment of inflammatory ailments. However, A. nitida leaves and fruits have not been yet reported regarding any potential medicinal effects. Leaves/fruits of A. nitida were extracted with methanol and fractionated to attain n-hexane, chloroform, ethyl acetate and aqueous fractions. These extracts were then evaluated for in vivo analgesic and anti-inflammatory potential. For in vivo anti-inflammatory activity, carrageenan-induced paw edema assay, Freunds' complete adjuvant-induced edema, xylene-induced ear edema and histamine-induced paw edema models were used in rats, which showed significant (p < 0.01) reduction (70−80%) in edema in comparison of inflammatory controls. On other hand, for the analgesic assessment, hot plate assay and acetic acid-induced writhing tests were used, which showed a significant (p < 0.01) rise in latency time (40−60%) as compared with pain-induced controls. These results were comparable with standard drugs in a concentration-dependent manner and no mortality or toxicity was observed during all experiments. Then, for the identification of chemical constituents gas chromatography−mass spectrometry (GC-MS) analysis was performed, which indicated the presence of neophytadiene, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, phytol and vitamin E, justifying the use of A. nitida to treat inflammatory disorders.


Subject(s)
Alnus , Alnus/chemistry , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Carrageenan/adverse effects , Edema/chemically induced , Edema/drug therapy , Gas Chromatography-Mass Spectrometry , Pain/chemically induced , Pain/drug therapy , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
14.
Front Mol Biosci ; 9: 783494, 2022.
Article in English | MEDLINE | ID: mdl-35495618

ABSTRACT

In recent times, enormous progress has been made in improving the diagnosis and therapeutic strategies for breast carcinoma, yet it remains the most prevalent cancer and second highest contributor to cancer-related deaths in women. Breast cancer (BC) affects one in eight females globally. In 2018 alone, 1.4 million cases were identified worldwide in postmenopausal women and 645,000 cases in premenopausal females, and this burden is constantly increasing. This shows that still a lot of efforts are required to discover therapeutic remedies for this disease. One of the major clinical complications associated with the treatment of breast carcinoma is the development of therapeutic resistance. Multidrug resistance (MDR) and consequent relapse on therapy are prevalent issues related to breast carcinoma; it is due to our incomplete understanding of the molecular mechanisms of breast carcinoma disease. Therefore, elucidating the molecular mechanisms involved in drug resistance is critical. For management of breast carcinoma, the treatment decision not only depends on the assessment of prognosis factors but also on the evaluation of pathological and clinical factors. Integrated data assessments of these multiple factors of breast carcinoma through multiomics can provide significant insight and hope for making therapeutic decisions. This omics approach is particularly helpful since it identifies the biomarkers of disease progression and treatment progress by collective characterization and quantification of pools of biological molecules within and among the cancerous cells. The scrupulous understanding of cancer and its treatment at the molecular level led to the concept of a personalized approach, which is one of the most significant advancements in modern oncology. Likewise, there are certain genetic and non-genetic tests available for BC which can help in personalized therapy. Genetically inherited risks can be screened for personal predisposition to BC, and genetic changes or variations (mutations) can also be identified to decide on the best treatment. Ultimately, further understanding of BC at the molecular level (multiomics) will define more precise choices in personalized medicine. In this review, we have summarized therapeutic resistance associated with BC and the techniques used for its management.

15.
Molecules ; 27(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35209141

ABSTRACT

In the present study, five 4-aminophenol derivatives (4-chloro-2-(((4-hydroxyphenyl)imino)methyl)phenol(S-1), 4-((4-(dimethylamino)benzylidene)amino)phenol(S-2), 4-((3-nitrobenzylidene)amino)phenol(S-3), 4-((thiophen-2-ylmethylene)amino)phenol(S-4) and 4-(((E)-3-phenylallylidene)amino)phenol(S-5)) were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR and elemental analyses. The synthesized compounds were tested for their antimicrobial (Gram-positive and Gram-negative bacteria and Saccharomyces cervesea fungus) and antidiabetic (α-amylase and α-glucosidase inhibitory) activities. All the compounds showed broad-spectrum activities against the Staphylococcus aureus (ATCC 6538), Micrococcus luteus (ATCC 4698), Staphylococcus epidermidis (ATCC 12228), Bacillus subtilis sub. sp spizizenii (ATCC 6633), Bordetella bronchiseptica (ATCC 4617) and Saccharomyces cerevisiae (ATCC 9763) strains. The newly synthesized compounds showed a significant inhibition of amylase (93.2%) and glucosidase (73.7%) in a concentration-dependent manner. Interaction studies of Human DNA with the synthesized Schiff bases were also performed. The spectral bands of S-1, S-2, S-3 and S-5 all showed hyperchromism, whereas the spectral band of S-4 showed a hypochromic effect. Moreover, the spectral bands of the S-2, S-3 and S-4 compounds were also found to exhibit a bathochromic shift (red shift). The present studies delineate broad-spectrum antimicrobial and antidiabetic activities of the synthesized compounds. Additionally, DNA interaction studies highlight the potential of synthetic compounds as anticancer agents. The DNA interaction studies, as well as the antidiabetic activities articulated by the molecular docking methods, showed the promising aspects of synthetic compounds.


Subject(s)
Aminophenols/chemical synthesis , Aminophenols/pharmacology , DNA/chemistry , Aminophenols/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Binding Sites , Chemistry Techniques, Synthetic , DNA/metabolism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Schiff Bases/chemistry , Spectrum Analysis , Structure-Activity Relationship
16.
BMC Complement Med Ther ; 22(1): 30, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35101010

ABSTRACT

BACKGROUND: Lactuca sativa is an edible plant commonly used by local communities to manage diabetes and stomach problems. METHODS: This work aimed to investigate the anti-oxidant, anticancer, antidiabetic and Anti-Alzheimer effects of hydroponically (HyL) and soil-grown (SoL) Lactuca sativa. Streptozotocin-induced diabetes and AlCl3-induced Alzheimer's disease model was used to evaluate the medicinal effects of Lactuca sativa. RESULTS: HyL showed significant activity in lipid peroxidation assay, DPPH and DNA protection assay, while SoL extract showed moderated activity, respectively. A similar activity response was quantified for α-glucosidase, α-amylase, acetylcholinesterase and butyrylcholinesterase inhibition assays. The cytotoxic potential of HyL and SoL extracts against MCF7, and HePG2 cancer cell lines exhibited significant activity. HyL and SoL showed a substantial decrease in blood glucose levels in streptozotocin-induced diabetic rats. Diabetes-related liver/kidney biomarkers and anti-oxidant enzyme trends moved toward normal after HyL and SoL treatment. In Anti-Alzheimer's based Morris water and elevated plus maze tests, HyL and SoL displayed memory-enhancing response and anti-anxiety behaviour, respectively. HPLC quantification of dopamine and serotonin revealed a moderate but significant (p<0.05) increase in the level of these neurotransmitters in HyL and SoL groups. CONCLUSION: Overall, the study revealed that hydroponic Lactuca sativa possesses the therapeutic potential to treat diseases like Alzheimer's and diabetes.


Subject(s)
Alzheimer Disease/drug therapy , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Lactuca , Plant Extracts/pharmacology , Animals , Lipid Peroxidation/drug effects , Male , Maze Learning , Morris Water Maze Test , Pakistan , Rats , Rats, Sprague-Dawley , Streptozocin
17.
Int J Biol Macromol ; 204: 466-475, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35157899

ABSTRACT

In the present research, we developed zinc oxide nanoparticles (ZnO-NPs) based surgical sutures for the accelerated wound healing process. Color change from transparent to dark, surface plasmon response with a peak at 270 nm and infra-red spectra with ZnO-bond stretches at 489.6831 cm-1 confirmed the synthesis of NPs. Rod shape ZnO-NPs with an ideal size of 70 ± 03 nm were noted with uniform distribution. X-rays diffraction patterns revealed sharp peaks which was a clear indication of the crystalline nature of NPs. The energy dispersive X-ray analysis of synthesized nanoparticles reveals that the expected stoichiometric mass percent of zinc and oxygen is 77.55% and 22.45% respectively. Disc-diffusion antibacterial assay revealed that synthesized NPs hold good anti-bacterial potential against the Escherichia coli and Methicillin-resistant staphylococcus aureus (MRSA). Gum based ZnO-NPs coated suture revealed good tensile strength which is considered as a necessary parameter for suturing purposes. The designed suture showed excellent wound healing potential in Sprague-dawley rats through the incision wound model. Overall, in rats, rapid rate of epithelialization, wound contraction, mild inflammation and absence of any infection on the wounded site were recorded. Additionally, histopathology showed enhanced collagen fibers, fibroblast cells, lower inflammatory cells and rapid angiogenesis at healed tissues as compared to standard surgical treatment. Conclusively, the improved wound healing responses of the AM-ZnO-NPs were obtained due to the higher antibacterial activity of NPs.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Zinc Oxide , Animals , Anti-Bacterial Agents/chemistry , Green Chemistry Technology , Gum Arabic , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Rats , Sutures , Wound Healing , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
18.
Medicine (Baltimore) ; 100(49): e28193, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34889300

ABSTRACT

BACKGROUND: To investigate the track of Gujrat, a District of Pakistan is very essential, either it follow-up World Health Organization (WHO) Hepatitis C Virus (HCV) elimination plan or not. This study aimed to find out HCV extinction analysis by time series forecast from District Gujrat, Pakistan. METHODS: From January 1, 2016 to December 31, 2020 total n-5,111 numbers of HCV real-time polymerase chain reaction (RT-PCR) tests were performed in Gujrat. For extinction analysis we used 2 different models, the first model was seasonal auto-regressive integrated moving average (SARIMA) and the second linear regression (LR) model. First, we fitted both models then these fitted and valid models were used to predict future HCV percentage in District Gujrat. RESULTS: In District Gujrat, the men HCV infected ratio is high with a higher viral load as compared with women, from year 2016 to 2020 male to female ratio was (53.75:53.19), (45.67:43.84), (39.67:39.36), (41.94:35.88), (37.70:31.38) respectively. HCV percentage is decreasing from 2016 to 2020 with an average of 4.98%. Our both fitted models SARIMAX (0,1,1)(0,1,1,6) at 95% confidence intervals and LR model Y = -0.379 X + 53.378 at 99% confidence intervals (P-value = .00) revealed that in June 2029 and in August 2027 respectively HCV percentage will be 0 from district Gujrat, Pakistan. CONCLUSIONS: This study concluded that both SARIMA and LR models showed an effective modeling process for forecasting yearly HCV incidence. District Gujrat, Punjab, Pakistan is on track to achieve the WHO HCV elimination plan, before 2030 HCV will be extinct from this region.


Subject(s)
Hepacivirus/isolation & purification , Hepatitis C/epidemiology , Female , Hepacivirus/genetics , Humans , Incidence , Linear Models , Male , Pakistan/epidemiology , Real-Time Polymerase Chain Reaction
19.
Biomater Res ; 25(1): 17, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33964968

ABSTRACT

BACKGROUND: Herein, we first time used the gum Moringa oleifera as reducing and capping agent for successful synthesis of silver nitrate and zinc oxide nanoparticles(NPs) through green synthesis approach. This study was aimed to check antibacterial activities of synthesized NPs against multidrug resistant bacteria methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Aqueous solutions of AgNO3 and purified gum powder were mixed with 1:1 ratio, autoclaved at 120oC for 2 min. NPs pellet collected after centrifugation at 10,000 g for 20 min. ZnO NPs were prepared by mixing purified gum powder and metal salt with1:1 ratio, heated (70oC) and stirred at 100 rpm for 4 h followed by centrifugation at 10,000 g for 20 min. Pellet was washed and calcinated at 400oC for 4 h. Antibacterial potential against E. coli, S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) was assessed by widely used Kirby-Bauer antibiotic susceptibility test. RESULTS: Optical observation of colour change from transparent to dark and UV-Visible analysis confirmed the synthesis of NPs. Fourier transform infrared spectroscopy (FTIR) of prepared nonmaterial revealed the characteristic AgNPs and ZnO stretch vibrations at wave number of 523 cm- 1 and 471 cm- 1resectively. Crystalline nature of AgNPs and ZnO NPs was confirmed by x-ray diffraction pattern with clear sharp Peaks. Scanning electron microscopy (SEM) revealed good surface morphology of AgNPs and ZnO NPs with 50nm and 60nm size respectively. AgNPs and ZnO NPs exhibited excellent antibacterial activity against E. coli (with zone of inhibition of 21 ± 02mm and 22 ± 03mm) and S.aureus ( with zone of inhibition of 20 ± 03mm and 21 ± 02mm) while good activity was observed against "super bug" methicillin-resistant Staphylococcus aureus (MRSA) with 16 ± 03mm ad 17 ± 02mm zone if inhibitions respectively. CONCLUSIONS: This novel addition of Moringa Gum based nanoparticles will open new dimensions in the field of nanomedicine and pharmaceutics especially against MDR bacterial strains.

20.
Environ Sci Pollut Res Int ; 28(18): 22742-22757, 2021 May.
Article in English | MEDLINE | ID: mdl-33423203

ABSTRACT

Nonylphenol (NP) is an environmental contaminant, which induces testicular toxicity through oxidative stress. Myricetin (MYR) is a naturally occurring flavonol having powerful antioxidant activity. The current research was planned to examine the ameliorative role of MYR against NP-induced testicular damage. A total of 24 adult male Sprague-Dawley rats were randomly divided into 4 equivalent groups: control (0.1% DMSO), NP group (50 mg kg-1), NP + MYR group (50 mg kg-1; 100 mg kg-1), and MYR-treated group (100 mg kg-1). NP administration significantly (p < 0.05) decreased the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), and protein content while significantly (p < 0.05) elevating the thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) levels. Additionally, NP significantly (p < 0.05) reduced the sperm motility, gene expression of testicular steroidogenic enzymes (3ß-HSD, 3ß-hydroxysteroid dehydrogenase; 17ß-HSD, 17ß-hydroxysteroid dehydrogenase; StAR, steroidogenic-acute regulatory protein), level of luteinizing hormone (LH), follicle-stimulating hormone (FSH), plasma testosterone, and daily sperm production (DSP). On the other hand, it raised the testicular cholesterol, dead sperms, and head, midpiece, and tail abnormalities along with abnormal histomorphometry. However, MYR remarkably abrogated NP-induced damages. In conclusion, the outcomes of the study suggest that MYR can effectively alleviate the NP-induced oxidative stress and testicular damages.


Subject(s)
Sperm Motility , Testis , Animals , Antioxidants/metabolism , Flavonoids , Humans , Male , Oxidative Stress , Phenols , Rats , Rats, Sprague-Dawley , Testis/metabolism , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL