Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(30): 11684-11698, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39092110

ABSTRACT

Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.

2.
ACS Cent Sci ; 10(2): 272-282, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435512

ABSTRACT

The rapid photochemical conversion of materials from liquid to solid (i.e., curing) has enabled the fabrication of modern plastics used in microelectronics, dentistry, and medicine. However, industrialized photocurables remain restricted to unimolecular bond homolysis reactions (Type I photoinitiations) that are driven by high-energy UV light. This narrow mechanistic scope both challenges the production of high-resolution objects and restricts the materials that can be produced using emergent manufacturing technologies (e.g., 3D printing). Herein we develop a photosystem based on triplet-triplet annihilation upconversion (TTA-UC) that efficiently drives a Type I photocuring process using green light at low power density (<10 mW/cm2) and in the presence of ambient oxygen. This system also exhibits a superlinear dependence of its cure depth on the light exposure intensity, which enhances spatial resolution. This enables for the first-time integration of TTA-UC in an inexpensive, rapid, and high-resolution manufacturing process, digital light processing (DLP) 3D printing. Moreover, relative to traditional Type I and Type II (photoredox) strategies, the present TTA-UC photoinitiation method results in improved cure depth confinement and resin shelf stability. This report provides a user-friendly avenue to utilize TTA-UC in ambient photochemical processes and paves the way toward fabrication of next-generation plastics with improved geometric precision and functionality.

SELECTION OF CITATIONS
SEARCH DETAIL