Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2823: 253-267, 2024.
Article in English | MEDLINE | ID: mdl-39052225

ABSTRACT

Targeted proteomics enables sensitive and specific quantification of proteins and post-translational modifications. By coupling peptide immunoaffinity enrichment with targeted mass spectrometry, we have developed the methodology for multiplexed quantification of proteins and phosphosites involved in the RAS/MAPK signaling network. The method uses anti-peptide antibodies to enrich analytes and heavy stable isotope-labeled internal standards, spiked in at known concentrations. The enriched peptides are directly measured by multiple-reaction monitoring (MRM), a well-characterized quantitative mass spectrometry-based method. The analyte (light) peptide response is measured relative to the heavy standard. The method described provides quantitative measurements of phospho-signaling and is generally applicable to other phosphopeptides and sample types.


Subject(s)
Mass Spectrometry , Proteomics , Signal Transduction , Proteomics/methods , Humans , Mass Spectrometry/methods , Receptor Protein-Tyrosine Kinases/metabolism , Isotope Labeling/methods , Phosphorylation , Phosphopeptides/metabolism , Phosphopeptides/analysis , Protein Processing, Post-Translational , Tandem Mass Spectrometry/methods
2.
Sci Data ; 11(1): 682, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918394

ABSTRACT

Immunotherapies are revolutionizing cancer care, but many patients do not achieve durable responses and immune-related adverse events are difficult to predict. Quantifying the hundreds of proteins involved in cancer immunity has the potential to provide biomarkers to monitor and predict tumor response. We previously developed robust, multiplexed quantitative assays for immunomodulatory proteins using targeted mass spectrometry, providing measurements that can be performed reproducibly and harmonized across laboratories. Here, we expand upon those efforts in presenting data from a multiplexed immuno-oncology (IO)-3 assay panel targeting 43 peptides representing 39 immune- and inflammation-related proteins. A suite of novel monoclonal antibodies was generated as assay reagents, and the fully characterized antibodies are made available as a resource to the community. The publicly available dataset contains complete characterization of the assay performance, as well as the mass spectrometer parameters and reagent information necessary for implementation of the assay. Quantification of the proteins will provide benefit to correlative studies in clinical trials, identification of new biomarkers, and improve understanding of the immune response in cancer.


Subject(s)
Antibodies, Monoclonal , Mass Spectrometry , Neoplasms , Humans , Antibodies, Monoclonal/immunology , Immunotherapy , Neoplasms/immunology
4.
Sci Data ; 11(1): 27, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177134

ABSTRACT

A wealth of proteogenomic data has been generated using cancer samples to deepen our understanding of the mechanisms of cancer and how biological networks are altered in association with somatic mutation of tumor suppressor genes, such as TP53 and PTEN. To generate functional signatures of TP53 or PTEN loss, we profiled the RNA and phosphoproteomes of the MCF10A epithelial cell line, along with its congenic TP53- or PTEN-knockout derivatives, upon perturbation with the monofunctional DNA alkylating agent methyl methanesulfonate (MMS) vs. mock treatment. To enable quantitative and reproducible mass spectrometry data generation, the cell lines were SILAC-labeled (stable isotope labeling with amino acids in cell culture), and the experimental design included label swapping and biological replicates. All data are publicly available and may be used to advance our understanding of the TP53 and PTEN tumor suppressor genes and to provide functional signatures for bioinformatic analyses of proteogenomic datasets.


Subject(s)
Neoplasms , RNA , Humans , DNA Damage , Epithelial Cells , Mutation , PTEN Phosphohydrolase/genetics , Tumor Suppressor Protein p53/genetics
5.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541199

ABSTRACT

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Proteogenomics , Female , Humans , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
6.
J Natl Compr Canc Netw ; 21(11): 1110-1116, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37643636

ABSTRACT

A woman with estrogen/progesterone receptor-positive, ERBB2-negative metastatic breast cancer developed progressive disease despite treatment with multiple hormonal and chemotherapeutic modalities. She carried a germline variant of MLH1 (1835del3), also known as c.1835_1837del and v612del, the pathogenicity of which has not been conclusively determined. MLH1 staining was not seen on immunohistochemical staining of her tumor tissue. The patient experienced a >5-year dramatic response to 4 doses of pembrolizumab. Family studies revealed multiple other relatives with the MLH1 1835del3 variant, as well as multiple relatives with colon cancer. The one relative with colon cancer who underwent genetic testing demonstrated the same variant. Laboratory studies revealed that the patient's tumor showed loss of heterozygosity (LOH) in the MLH1 region, high levels of microsatellite instability, and a high tumor mutational burden. LOH in the MLH1 region, along with the remarkable clinical response to pembrolizumab treatment and the presence of the same MLH1 variant in affected relatives, supports the hypothesis that the MLH1 1835del3 variant is pathogenic. Given the patient's family history, this likely represents an uncommon presentation of Lynch syndrome. Physicians should be alert to evaluate patients for targetable genetic variants even in unlikely clinical situations such as the one described here.


Subject(s)
Breast Neoplasms , Colonic Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Virulence , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Germ-Line Mutation , MutL Protein Homolog 1/genetics
7.
Mol Cell Proteomics ; 22(9): 100621, 2023 09.
Article in English | MEDLINE | ID: mdl-37478973

ABSTRACT

Targeted mass spectrometry (MS)-based proteomic assays, such as multiplexed multiple reaction monitoring (MRM)-MS assays, enable sensitive and specific quantification of proteotypic peptides as stoichiometric surrogates for proteins. Efforts are underway to expand the use of MRM-MS assays in clinical environments, which requires a reliable strategy to monitor proteolytic digestion efficiency within individual samples. Towards this goal, extended stable isotope-labeled standard (SIS) peptides (hE), which incorporate native proteolytic cleavage sites, can be spiked into protein lysates prior to proteolytic (trypsin) digestion, and release of the tryptic SIS peptide (hT) can be monitored. However, hT measurements alone cannot monitor the extent of digestion and may be confounded by matrix effects specific to individual patient samples; therefore, they are not sufficient to monitor sample-to-sample digestion variability. We hypothesized that measuring undigested hE, along with its paired hT, would improve detection of digestion issues compared to only measuring hT. We tested the ratio of the SIS pair measurements, or hE/hT, as a quality control (QC) metric of trypsin digestion for two MRM assays: a direct-MRM (398 targets) and an immuno-MRM (126 targets requiring immunoaffinity peptide enrichment) assay, with extended SIS peptides observable for 54% (216) and 62% (78) of the targets, respectively. We evaluated the quantitative bias for each target in a series of experiments that adversely affected proteolytic digestion (e.g., variable digestion times, pH, and temperature). We identified a subset of SIS pairs (36 for the direct-MRM, 7 for the immuno-MRM assay) for which the hE/hT ratio reliably detected inefficient digestion that resulted in decreased assay sensitivity and unreliable endogenous quantification. The hE/hT ratio was more responsive to a decrease in digestion efficiency than a metric based on hT measurements alone. For clinical-grade MRM-MS assays, this study describes a ready-to-use QC panel and also provides a road map for designing custom QC panels.


Subject(s)
Peptides , Proteomics , Humans , Proteomics/methods , Trypsin/chemistry , Peptides/analysis , Mass Spectrometry/methods , Quality Control , Digestion
8.
Front Oncol ; 13: 1168710, 2023.
Article in English | MEDLINE | ID: mdl-37205196

ABSTRACT

Introduction: Immunotherapy is an effective treatment for a subset of cancer patients, and expanding the benefits of immunotherapy to all cancer patients will require predictive biomarkers of response and immune-related adverse events (irAEs). To support correlative studies in immunotherapy clinical trials, we are developing highly validated assays for quantifying immunomodulatory proteins in human biospecimens. Methods: Here, we developed a panel of novel monoclonal antibodies and incorporated them into a novel, multiplexed, immuno-multiple reaction monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49 proteotypic peptides representing 43 immunomodulatory proteins. Results and discussion: The multiplex assay was validated in human tissue and plasma matrices, where the linearity of quantification was >3 orders of magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma). Proof-of-principle demonstration of the assay was conducted in plasma samples collected in clinical trials from lymphoma patients receiving an immune checkpoint inhibitor. We provide the assays and novel monoclonal antibodies as a publicly available resource for the biomedical community.

9.
Biopreserv Biobank ; 20(5): 436-445, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36301140

ABSTRACT

There is growing interest in proteomic analyses of tissue biopsies to reveal pathophysiology and identify biomarkers. The current gold standard for collecting tissue biopsies for preserving the proteome and post-translational modifications is flash freezing in liquid nitrogen (LN2). However, in many clinical settings, this is not an option due to unavailability of LN2 nor trained personnel for rapid biospecimen processing. To address this need, we developed a proof-of-concept quick-freeze prototype device to rapidly freeze biospecimens at the point-of-care to preserve the phosphoproteome without the need for LN2. Our objectives were to develop the device, demonstrate the ease of use, confirm the ability to ship through existing cold chain logistics, and evaluate the cooling performance (i.e., cool a tissue sample to <0°C in <60 seconds, below -8°C in <120 seconds, and maintain temperature <0°C for >60 minutes) in the context of preserving the proteome in a tissue biospecimen. To demonstrate feasibility, the performance of the prototype was benchmarked against flash freezing in LN2 using a murine melanoma patient-derived xenograft model subjected to total body irradiation to elicit phosphosignaling in the DNA damage response network. Tumors were harvested and quadrisected, with two parts of the tumor being snap frozen in LN2, and the remaining two parts being rapidly cooled in the prototype quick-freeze biospecimen containers. Phosphoproteins were profiled by liquid chromatography tandem mass spectrometry and quantified by targeted multiple reaction monitoring MS. Overall, the phosphoproteome was equivalent in biospecimens processed using the quick-freeze containers to those using the LN2 gold standard, although the measurements of a subset of phosphopeptides in the device-frozen specimens were more variable than LN2-frozen specimens. The prototype device forms the framework for development of a commercial device that will improve tissue biopsy preservation for measurement of important phosphosignaling molecules.


Subject(s)
Proteome , Proteomics , Humans , Mice , Animals , Proteome/analysis , Proteome/chemistry , Freezing , Tissue Preservation , Biopsy
10.
Anal Chem ; 94(27): 9540-9547, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35767427

ABSTRACT

Despite advances in proteomic technologies, clinical translation of plasma biomarkers remains low, partly due to a major bottleneck between the discovery of candidate biomarkers and costly clinical validation studies. Due to a dearth of multiplexable assays, generally only a few candidate biomarkers are tested, and the validation success rate is accordingly low. Previously, mass spectrometry-based approaches have been used to fill this gap but feature poor quantitative performance and were generally limited to hundreds of proteins. Here, we demonstrate the capability of an internal standard triggered-parallel reaction monitoring (IS-PRM) assay to greatly expand the numbers of candidates that can be tested with improved quantitative performance. The assay couples immunodepletion and fractionation with IS-PRM and was developed and implemented in human plasma to quantify 5176 peptides representing 1314 breast cancer biomarker candidates. Characterization of the IS-PRM assay demonstrated the precision (median % CV of 7.7%), linearity (median R2 > 0.999 over 4 orders of magnitude), and sensitivity (median LLOQ < 1 fmol, approximately) to enable rank-ordering of candidate biomarkers for validation studies. Using three plasma pools from breast cancer patients and three control pools, 893 proteins were quantified, of which 162 candidate biomarkers were verified in at least one of the cancer pools and 22 were verified in all three cancer pools. The assay greatly expands capabilities for quantification of large numbers of proteins and is well suited for prioritization of viable candidate biomarkers.


Subject(s)
Breast Neoplasms , Proteomics , Biomarkers/analysis , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Female , Humans , Mass Spectrometry/methods , Peptides/analysis , Proteins , Proteomics/methods
11.
Front Immunol ; 12: 765898, 2021.
Article in English | MEDLINE | ID: mdl-34858420

ABSTRACT

Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Peptides/analysis , Proteome/analysis , Proteomics/methods , Specimen Handling/methods , Antibodies/analysis , Antibodies/immunology , Blotting, Western , Cell Line, Tumor , HeLa Cells , Humans , Jurkat Cells , MCF-7 Cells , Peptides/blood , Peptides/immunology , Proteome/genetics , Proteome/immunology , RNA-Seq/methods , Reproducibility of Results
12.
Sci Signal ; 14(697)2021 08 24.
Article in English | MEDLINE | ID: mdl-34429382

ABSTRACT

Chimeric antigen receptor (CAR)-modified T cell therapy is effective in treating lymphomas, leukemias, and multiple myeloma in which the tumor cells express high amounts of target antigen. However, achieving durable remission for these hematological malignancies and extending CAR T cell therapy to patients with solid tumors will require receptors that can recognize and eliminate tumor cells with a low density of target antigen. Although CARs were designed to mimic T cell receptor (TCR) signaling, TCRs are at least 100-fold more sensitive to antigen. To design a CAR with improved antigen sensitivity, we directly compared TCR and CAR signaling in primary human T cells. Global phosphoproteomic analysis revealed that key T cell signaling proteins-such as CD3δ, CD3ε, and CD3γ, which comprise a portion of the T cell co-receptor, as well as the TCR adaptor protein LAT-were either not phosphorylated or were only weakly phosphorylated by CAR stimulation. Modifying a commonplace 4-1BB/CD3ζ CAR sequence to better engage CD3ε and LAT using embedded CD3ε or GRB2 domains resulted in enhanced T cell activation in vitro in settings of a low density of antigen, and improved efficacy in in vivo models of lymphoma, leukemia, and breast cancer. These CARs represent examples of alterations in receptor design that were guided by in-depth interrogation of T cell signaling.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Multiple Myeloma/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Signal Transduction
13.
Cancers (Basel) ; 13(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34359745

ABSTRACT

The ATM serine/threonine kinase (HGNC: ATM) is involved in initiation of repair of DNA double-stranded breaks, and ATM inhibitors are currently being tested as anti-cancer agents in clinical trials, where pharmacodynamic (PD) assays are crucial to help guide dose and scheduling and support mechanism of action studies. To identify and quantify PD biomarkers of ATM inhibition, we developed and analytically validated a 51-plex assay (DDR-2) quantifying protein expression and DNA damage-responsive phosphorylation. The median lower limit of quantification was 1.28 fmol, the linear range was over 3 orders of magnitude, the median inter-assay variability was 11% CV, and 86% of peptides were stable for storage prior to analysis. Use of the assay was demonstrated to quantify signaling following ionizing radiation-induced DNA damage in both immortalized lymphoblast cell lines and primary human peripheral blood mononuclear cells, identifying PD biomarkers for ATM inhibition to support preclinical and clinical studies.

14.
Sci Transl Med ; 13(580)2021 02 10.
Article in English | MEDLINE | ID: mdl-33568520

ABSTRACT

Among the pleotropic roles of transforming growth factor-ß (TGFß) signaling in cancer, its impact on genomic stability is least understood. Inhibition of TGFß signaling increases use of alternative end joining (alt-EJ), an error-prone DNA repair process that typically functions as a "backup" pathway if double-strand break repair by homologous recombination or nonhomologous end joining is compromised. However, the consequences of this functional relationship on therapeutic vulnerability in human cancer remain unknown. Here, we show that TGFß broadly controls the DNA damage response and suppresses alt-EJ genes that are associated with genomic instability. Mechanistically based TGFß and alt-EJ gene expression signatures were anticorrelated in glioblastoma, squamous cell lung cancer, and serous ovarian cancer. Consistent with error-prone repair, more of the genome was altered in tumors classified as low TGFß and high alt-EJ, and the corresponding patients had better outcomes. Pan-cancer analysis of solid neoplasms revealed that alt-EJ genes were coordinately expressed and anticorrelated with TGFß competency in 16 of 17 cancer types tested. Moreover, regardless of cancer type, tumors classified as low TGFß and high alt-EJ were characterized by an insertion-deletion mutation signature containing short microhomologies and were more sensitive to genotoxic therapy. Collectively, experimental studies revealed that loss or inhibition of TGFß signaling compromises the DNA damage response, resulting in ineffective repair by alt-EJ. Translation of this mechanistic relationship into gene expression signatures identified a robust anticorrelation that predicts response to genotoxic therapies, thereby expanding the potential therapeutic scope of TGFß biology.


Subject(s)
DNA End-Joining Repair , Neoplasms , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair/genetics , Humans , Neoplasms/genetics , Transforming Growth Factor beta
15.
Cell Rep Med ; 2(12): 100471, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028612

ABSTRACT

Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).


Subject(s)
Carboplatin/therapeutic use , Carnitine O-Palmitoyltransferase/metabolism , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Genomics , Molecular Targeted Therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Apoptosis/drug effects , Carboplatin/pharmacology , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Carnitine O-Palmitoyltransferase/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cystadenocarcinoma, Serous/drug therapy , DNA Damage , Drug Resistance, Neoplasm/drug effects , Fatty Acids/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, SCID , Neoplasm Grading , Ovarian Neoplasms/drug therapy , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Phosphoproteins/metabolism , Proteomics , Reactive Oxygen Species/metabolism
16.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33242424

ABSTRACT

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Proteogenomics , Brain Neoplasms/immunology , Child , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Glioma/genetics , Glioma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mutation/genetics , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Phosphoproteins/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
17.
Sci Data ; 6(1): 160, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467290

ABSTRACT

RAS genes are frequently mutated in cancer and have for decades eluded effective therapeutic attack. The National Cancer Institute's RAS Initiative has a focus on understanding pathways and discovering therapies for RAS-driven cancers. Part of these efforts is the generation of novel reagents to enable the quantification of RAS network proteins. Here we present a dataset describing the development, validation (following consensus principles developed by the broader research community), and distribution of 104 monoclonal antibodies (mAbs) enabling detection of 27 phosphopeptides and 69 unmodified peptides from 20 proteins in the RAS network. The dataset characterizes the utility of the antibodies in a variety of applications, including Western blotting, immunoprecipitation, protein array, immunohistochemistry, and targeted mass spectrometry. All antibodies and characterization data are publicly available through the CPTAC Antibody Portal, Panorama Public Repository, and/or PRIDE databases. These reagents will aid researchers in discerning pathways and measuring expression changes in the RAS signaling network.


Subject(s)
Antibodies, Monoclonal/chemistry , Genes, ras , Signal Transduction , Cell Line , DNA Fingerprinting , Humans , Indicators and Reagents/chemistry , Microsatellite Repeats , Neoplasms/genetics
18.
Br J Cancer ; 119(10): 1233-1243, 2018 11.
Article in English | MEDLINE | ID: mdl-30385821

ABSTRACT

BACKGROUND: AZD0156 and AZD6738 are potent and selective inhibitors of ataxia-telangiectasia-kinase (ATM) and ataxia-telangiectasia-mutated and Rad3-related (ATR), respectively, important sensors/signallers of DNA damage. METHODS: We used multiplexed targeted-mass-spectrometry to select pRAD50(Ser635) as a pharmacodynamic biomarker for AZD0156-mediated ATM inhibition from a panel of 45 peptides, then developed and tested a clinically applicable immunohistochemistry assay for pRAD50(Ser635) detection in FFPE tissue. RESULTS: We found moderate pRAD50 baseline levels across cancer indications. pRAD50 was detectable in 100% gastric cancers (n = 23), 99% colorectal cancers (n = 102), 95% triple-negative-breast cancers (TNBC) (n = 40) and 87.5% glioblastoma-multiformes (n = 16). We demonstrated AZD0156 target inhibition in TNBC patient-derived xenograft models; where AZD0156 monotherapy or post olaparib treatment, resulted in a 34-72% reduction in pRAD50. Similar inhibition of pRAD50 (68%) was observed following ATM inhibitor treatment post irinotecan in a colorectal cancer xenograft model. ATR inhibition, using AZD6738, increased pRAD50 in the ATM-proficient models whilst in ATM-deficient models the opposite was observed, suggesting pRAD50 pharmacodynamics post ATR inhibition may be ATM-dependent and could be useful to determine ATM functionality in patients treated with ATR inhibitors. CONCLUSION: Together these data support clinical utilisation of pRAD50 as a biomarker of AZD0156 and AZD6738 pharmacology to elucidate clinical pharmacokinetic/pharmacodynamic relationships, thereby informing recommended Phase 2 dose/schedule.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Mass Spectrometry/methods , Animals , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Biomarkers/metabolism , Cell Line , DNA Damage , Humans , Immunohistochemistry , Indoles , Irinotecan/pharmacology , Mice , Mice, Nude , Morpholines , Phthalazines/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Signal Transduction , Sulfonamides , Sulfoxides/pharmacology , Sulfoxides/therapeutic use , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays
19.
Sci Signal ; 11(544)2018 08 21.
Article in English | MEDLINE | ID: mdl-30131370

ABSTRACT

Chimeric antigen receptors (CARs) link an antigen recognition domain to intracellular signaling domains to redirect T cell specificity and function. T cells expressing CARs with CD28/CD3ζ or 4-1BB/CD3ζ signaling domains are effective at treating refractory B cell malignancies but exhibit differences in effector function, clinical efficacy, and toxicity that are assumed to result from the activation of divergent signaling cascades. We analyzed stimulation-induced phosphorylation events in primary human CD8+ CD28/CD3ζ and 4-1BB/CD3ζ CAR T cells by mass spectrometry and found that both CAR constructs activated similar signaling intermediates. Stimulation of CD28/CD3ζ CARs activated faster and larger-magnitude changes in protein phosphorylation, which correlated with an effector T cell-like phenotype and function. In contrast, 4-1BB/CD3ζ CAR T cells preferentially expressed T cell memory-associated genes and exhibited sustained antitumor activity against established tumors in vivo. Mutagenesis of the CAR CD28 signaling domain demonstrated that the increased CD28/CD3ζ CAR signal intensity was partly related to constitutive association of Lck with this domain in CAR complexes. Our data show that CAR signaling pathways cannot be predicted solely by the domains used to construct the receptor and that signal strength is a key determinant of T cell fate. Thus, tailoring CAR design based on signal strength may lead to improved clinical efficacy and reduced toxicity.


Subject(s)
Phosphoproteins/analysis , Proteomics/methods , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/therapy , Cell Line, Tumor , Cells, Cultured , HEK293 Cells , Humans , Immunotherapy, Adoptive/methods , K562 Cells , Kinetics , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Phosphoproteins/metabolism , Survival Analysis , Xenograft Model Antitumor Assays/methods
20.
DNA Repair (Amst) ; 65: 47-53, 2018 05.
Article in English | MEDLINE | ID: mdl-29605812

ABSTRACT

The Fanconi anemia pathway is an important coordinator of DNA repair pathways and is particularly relevant to repair of DNA inter-strand crosslinks. Central to the pathway is monoubiquitination of FANCD2, requiring the function of multiple proteins in an upstream Fanconi core complex. We present development and analytical characterization of a novel assay for quantification of unmodified and monoubiquitinated FANCD2 proteoforms, based on peptide immunoaffinity enrichment and targeted multiple reaction monitoring mass spectrometry (immuno-MRM). The immuno-MRM assay is analytically characterized using fit-for-purpose method validation. The assay linear range is >3 orders of magnitude with total repeatability <16% CV. In proof-of-principle experiments, we demonstrate application of the multiplex assay by quantifying the FANCD2 proteoforms following mitomycin-c treatment in an isogenic pair of FancA-corrected and uncorrected cell lines, as well as primary peripheral blood mononuclear cells from Fanconi Anemia patients. Additionally, we demonstrate detection of endogenous FANCD2 monoubiquitination in human breast cancer tissue. The immuno-MRM assay provides a potential functional diagnostic for patients with Fanconi Anemia with defects in the upstream FA complex or FANCD2, and a potential test for predicting sensitivity to DNA cross-linking agents in human cancers.


Subject(s)
Fanconi Anemia Complementation Group D2 Protein/analysis , Mass Spectrometry/methods , Ubiquitination , Cell Line , Cross-Linking Reagents/toxicity , DNA/drug effects , DNA/metabolism , DNA Damage , DNA Repair , Fanconi Anemia Complementation Group D2 Protein/drug effects , Fanconi Anemia Complementation Group D2 Protein/metabolism , Female , Humans , Mitomycin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL