Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 300
1.
J Alzheimers Dis ; 99(3): 953-963, 2024.
Article En | MEDLINE | ID: mdl-38759009

Background: Primary outcome measure in the clinical trials of disease modifying therapy (DMT) drugs for Alzheimer's disease (AD) has often been evaluated by Clinical Dementia Rating sum of boxes (CDRSB). However, CDR testing requires specialized training and 30-50 minutes to complete, not being suitable for daily clinical practice. Objective: Herein, we proposed a machine-learning method to estimate CDRSB changes using simpler cognitive/functional batteries (Mini-Mental State Examination [MMSE] and Functional Activities Questionnaire [FAQ]), to replace CDR testing. Methods: Baseline data from 944 ADNI and 171 J-ADNI amyloid-positive participants were used to build machine-learning models predicting annualized CDRSB changes between visits, based on MMSE and FAQ scores. Prediction performance was evaluated with mean absolute error (MAE) and R2 comparing predicted to actual rmDeltaCDRSB/rmDeltayear. We further assessed whether decline in cognitive function surpassing particular thresholds could be identified using the predicted rmDeltaCDRSB/rmDeltayear. RESULTS: The models achieved the minimum required prediction errors (MAE < 1.0) and satisfactory prediction accuracy (R2>0.5) for mild cognitive impairment (MCI) patients for changes in CDRSB over periods of 18 months or longer. Predictions of annualized CDRSB progression>0.5, >1.0, or >1.5 demonstrated a consistent performance (i.e., Matthews correlation coefficient>0.5). These results were largely replicated in the J-ADNI case predictions. CONCLUSIONS: Our method effectively predicted MCI patient deterioration in the CDRSB based solely on MMSE and FAQ scores. It may aid routine practice for disease-modifying therapy drug efficacy evaluation, without necessitating CDR testing at every visit.


Alzheimer Disease , Machine Learning , Mental Status and Dementia Tests , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Female , Male , Aged , Mental Status and Dementia Tests/statistics & numerical data , Aged, 80 and over , Surveys and Questionnaires , Disease Progression , Neuropsychological Tests/statistics & numerical data , Cognitive Dysfunction/diagnosis
2.
Alzheimers Res Ther ; 16(1): 115, 2024 May 23.
Article En | MEDLINE | ID: mdl-38778353

BACKGROUND: Maximizing the efficiency to screen amyloid-positive individuals in asymptomatic and non-demented aged population using blood-based biomarkers is essential for future success of clinical trials in the early stage of Alzheimer's disease (AD). In this study, we elucidate the utility of combination of plasma amyloid-ß (Aß)-related biomarkers and tau phosphorylated at threonine 217 (p-tau217) to predict abnormal Aß-positron emission tomography (PET) in the preclinical and prodromal AD. METHODS: We designed the cross-sectional study including two ethnically distinct cohorts, the Japanese trial-ready cohort for preclinica and prodromal AD (J-TRC) and the Swedish BioFINDER study. J-TRC included 474 non-demented individuals (CDR 0: 331, CDR 0.5: 143). Participants underwent plasma Aß and p-tau217 assessments, and Aß-PET imaging. Findings in J-TRC were replicated in the BioFINDER cohort including 177 participants (cognitively unimpaired: 114, mild cognitive impairment: 63). In both cohorts, plasma Aß(1-42) (Aß42) and Aß(1-40) (Aß40) were measured using immunoprecipitation-MALDI TOF mass spectrometry (Shimadzu), and p-tau217 was measured with an immunoassay on the Meso Scale Discovery platform (Eli Lilly). RESULTS: Aß-PET was abnormal in 81 participants from J-TRC and 71 participants from BioFINDER. Plasma Aß42/Aß40 ratio and p-tau217 individually showed moderate to high accuracies when detecting abnormal Aß-PET scans, which were improved by combining plasma biomarkers and by including age, sex and APOE genotype in the models. In J-TRC, the highest AUCs were observed for the models combining p-tau217/Aß42 ratio, APOE, age, sex in the whole cohort (AUC = 0.936), combining p-tau217, Aß42/Aß40 ratio, APOE, age, sex in the CDR 0 group (AUC = 0.948), and combining p-tau217/Aß42 ratio, APOE, age, sex in the CDR 0.5 group (AUC = 0.955), respectively. Each subgroup results were replicated in BioFINDER, where the highest AUCs were seen for models combining p-tau217, Aß42/40 ratio, APOE, age, sex in cognitively unimpaired (AUC = 0.938), and p-tau217/Aß42 ratio, APOE, age, sex in mild cognitive impairment (AUC = 0.914). CONCLUSIONS: Combination of plasma Aß-related biomarkers and p-tau217 exhibits high performance when predicting Aß-PET positivity. Adding basic clinical information (i.e., age, sex, APOE Îµ genotype) improved the prediction in preclinical AD, but not in prodromal AD. Combination of Aß-related biomarkers and p-tau217 could be highly useful for pre-screening of participants in clinical trials of preclinical and prodromal AD.


Amyloid beta-Peptides , Biomarkers , Brain , Positron-Emission Tomography , tau Proteins , Humans , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/metabolism , Female , Male , tau Proteins/blood , Aged , Positron-Emission Tomography/methods , Biomarkers/blood , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/metabolism , Aged, 80 and over , Cohort Studies , Phosphorylation , Middle Aged , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Peptide Fragments/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/diagnosis
3.
J Neurosci ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649269

Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.Significance Statement Alzheimer's disease (AD) is a degenerative disease that causes cognitive decline. Familial AD is a severe form caused by mutations in the PSEN1, PSEN2, or APP genes. One carrier of the PSEN1 mutation did not develop dementia. This carrier also had a rare variant of the APOE gene, the Christchurch variant. The APOE Christchurch variant may protect against familial AD. The mechanism of this protection is not fully understood. In the present study, we have successfully demonstrated that the APOE Christchurch variant suppresses the propagation of tau and exhibits a diminished capacity to convert native astrocytes into reactive astrocytes. These significant findings contribute novel insights to the field of the APOE gene and AD research.

4.
Cell Mol Life Sci ; 81(1): 192, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652179

BACKGROUND:  Alzheimer's disease (AD) is pathologically characterized by the abnormal accumulation of Aß and tau proteins. There has long been a keen interest among researchers in understanding how Aß and tau are ultimately cleared in the brain. The discovery of this glymphatic system introduced a novel perspective on protein clearance and it gained recognition as one of the major brain clearance pathways for clearing these pathogenic proteins in AD. This finding has sparked interest in exploring the potential contribution of the glymphatic/meningeal lymphatic system in AD. Furthermore, there is a growing emphasis and discussion regarding the possibility that activating the glymphatic/meningeal lymphatic system could serve as a novel therapeutic strategy against AD. OBJECTIVES:  Given this current research trend, the primary focus of this comprehensive review is to highlight the role of the glymphatic/meningeal lymphatic system in the pathogenesis of AD. The discussion will encompass future research directions and prospects for treatment in relation to the glymphatic/meningeal lymphatic system.


Alzheimer Disease , Glymphatic System , Lymphatic System , Meninges , Proteostasis , Animals , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Glymphatic System/metabolism , Glymphatic System/pathology , Lymphatic System/metabolism , Lymphatic System/pathology , Meninges/metabolism , Meninges/pathology , tau Proteins/metabolism
5.
Autophagy ; : 1-2, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38497477

Conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments has attracted attention as the non-autophagic function of the Atg8-family protein conjugation system, and the V-ATPase-ATG16L1 axis has emerged as a core mechanism. Our recent research has revealed that this mechanism contributes to the lysosomal recruitment and activation of LRRK2, a Parkinson disease-associated kinase that phosphorylates a subset of RAB GTPases. The activated LRRK2 under CASM-causing lysosomal stress acts to regulate lysosomal morphology and stimulate extracellular secretion of lysosomal contents, thereby promoting the lysosomal stress response.

6.
Intern Med ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38432969

A 77-year-old female with a subacute progression of ataxia and serum anti-Yo antibodies was suspected to have paraneoplastic cerebellar degeneration (PCD). An examination of an underlying cancer showed no abnormality in the gynecological organs, but the findings did show a mass in the Douglas fossa. The mass was resected and diagnosed as stage IIB peritoneal serous papillary carcinoma (PSPC), a rare gynecologic cancer that is difficult to diagnose in the early stages. PCD was treated with intravenous immunoglobulin (IVIG). For an early diagnosis and treatment, PSPC should be included in the list of malignancies that cause PCD with anti-Yo antibodies.

7.
iScience ; 27(2): 108893, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38313055

α-Synuclein and LRRK2 are associated with both familial and sporadic Parkinson's disease (PD), although the mechanistic link between these two proteins has remained elusive. Treating cells with lysosomotropic drugs causes the recruitment of LRRK2 and its substrate Rab10 onto overloaded lysosomes and induces extracellular release of lysosomal contents. Here we show that lysosomal overload elicits the release of insoluble α-synuclein from macrophages and microglia loaded with α-synuclein fibrils. This release occurred specifically in macrophage lineage cells, was dependent on the LRRK2-Rab10 pathway and involved exosomes. Also, the uptake of α-synuclein fibrils enhanced the LRRK2 phosphorylation of Rab10, which was accompanied by an increased recruitment of LRRK2 and Rab10 onto lysosomal surface. Our data collectively suggest that α-synuclein fibrils taken up in lysosomes activate the LRRK2-Rab10 pathway, which in turn upregulates the extracellular release of α-synuclein aggregates, leading to a vicious cycle that could enhance α-synuclein propagation in PD pathology.

8.
J Alzheimers Dis Rep ; 8(1): 203-240, 2024.
Article En | MEDLINE | ID: mdl-38405341

Background: Alzheimer's disease (AD) causes progressive decline of cognition and function. There is a lack of systematic literature reviews on prognostic and predictive factors in its early clinical stages (eAD), i.e., mild cognitive impairment due to AD and mild AD dementia. Objective: To identify prognostic factors affecting eAD progression and predictive factors for treatment efficacy and safety of approved and/or under late-stage development disease-modifying treatments. Methods: Databases were searched (August 2022) for studies reporting prognostic factors associated with eAD progression and predictive factors for treatment response. The Quality in Prognostic Factor Studies tool or the Cochrane risk of bias tool were used to assess risk of bias. Two reviewers independently screened the records. A single reviewer performed data extraction and quality assessment. A second performed a 20% check. Content experts reviewed and interpreted the data collected. Results: Sixty-one studies were included. Self-reporting, diagnosis definition, and missing data led to high risk of bias. Population size ranged from 110 to 11,451. Analyses found data indicating that older age was and depression may be associated with progression. Greater baseline cognitive impairment was associated with progression. APOE4 may be a prognostic factor, a predictive factor for treatment efficacy and predicts an adverse response (ARIA). Elevated biomarkers (CSF/plasma p-tau, CSF t-tau, and plasma neurofilament light) were associated with disease progression. Conclusions: Age was the strongest risk factor for progression. Biomarkers were associated with progression, supporting their use in trial selection and aiding diagnosis. Baseline cognitive impairment was a prognostic factor. APOE4 predicted ARIA, aligning with emerging evidence and relevant to treatment initiation/monitoring.

9.
Eur Psychiatry ; 67(1): e19, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38389390

BACKGROUND: A short yet reliable cognitive measure is needed that separates treatment and placebo for treatment trials for Alzheimer's disease. Hence, we aimed to shorten the Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog) and test its use as an efficacy measure. METHODS: Secondary data analysis of participant-level data from five pivotal clinical trials of donepezil compared with placebo for Alzheimer's disease (N = 2,198). Across all five trials, cognition was appraised using the original 11-item ADAS-Cog. Statistical analysis consisted of sample characterization, item response theory (IRT) to identify an ADAS-Cog short version, and mixed models for repeated-measures analysis to examine the effect sizes of ADAS-Cog change on the original and short versions in the placebo versus donepezil groups. RESULTS: Based on IRT, a short ADAS-Cog was developed with seven items and two response options. The original and short ADAS-Cog correlated at baseline and at weeks 12 and 24 at 0.7. Effect sizes based on mixed modeling showed that the short and original ADAS-Cog separated placebo and donepezil comparably (ADAS-Cog original ES = 0.33, 95% CI = 0.29, 0.40, ADAS-Cog short ES = 0.25, 95% CI =0.23, 0.34). CONCLUSIONS: IRT identified a short ADAS-cog version that separated donepezil and placebo, suggesting its clinical potential for assessment and treatment monitoring.


Alzheimer Disease , Cognition Disorders , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Donepezil/therapeutic use , Cognition
10.
Alzheimers Res Ther ; 16(1): 45, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38414085

BACKGROUND: Polygenic effects have been proposed to account for some disease phenotypes; these effects are calculated as a polygenic risk score (PRS). This score is correlated with Alzheimer's disease (AD)-related phenotypes, such as biomarker abnormalities and brain atrophy, and is associated with conversion from mild cognitive impairment (MCI) to AD. However, the AD PRS has been examined mainly in Europeans, and owing to differences in genetic structure and lifestyle, it is unclear whether the same relationships between the PRS and AD-related phenotypes exist in non-European populations. In this study, we calculated and evaluated the AD PRS in Japanese individuals using genome-wide association study (GWAS) statistics from Europeans. METHODS: In this study, we calculated the AD PRS in 504 Japanese participants (145 cognitively unimpaired (CU) participants, 220 participants with late mild cognitive impairment (MCI), and 139 patients with mild AD dementia) enrolled in the Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI) project. In order to evaluate the clinical value of this score, we (1) determined the polygenic effects on AD in the J-ADNI and validated it using two independent cohorts (a Japanese neuropathology (NP) cohort (n = 565) and the North American ADNI (NA-ADNI) cohort (n = 617)), (2) examined the AD-related phenotypes associated with the PRS, and (3) tested whether the PRS helps predict the conversion of MCI to AD. RESULTS: The PRS using 131 SNPs had an effect independent of APOE. The PRS differentiated between CU participants and AD patients with an area under the curve (AUC) of 0.755 when combined with the APOE variants. Similar AUC was obtained when PRS calculated by the NP and NA-ADNI cohorts was applied. In MCI patients, the PRS was associated with cerebrospinal fluid phosphorylated-tau levels (ß estimate = 0.235, p value = 0.026). MCI with a high PRS showed a significantly increased conversion to AD in APOE ε4 noncarriers with a hazard rate of 2.22. In addition, we also developed a PRS model adjusted for LD and observed similar results. CONCLUSIONS: We showed that the AD PRS is useful in the Japanese population, whose genetic structure is different from that of the European population. These findings suggest that the polygenicity of AD is partially common across ethnic differences.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Genome-Wide Association Study , Japan , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Genetic Risk Score , Apolipoproteins E/genetics
11.
J Cell Biol ; 223(3)2024 03 04.
Article En | MEDLINE | ID: mdl-38227290

Leucine-rich repeat kinase 2 (LRRK2), a Rab kinase associated with Parkinson's disease and several inflammatory diseases, has been shown to localize to stressed lysosomes and get activated to regulate lysosomal homeostasis. However, the mechanisms of LRRK2 recruitment and activation have not been well understood. Here, we found that the ATG8 conjugation system regulates the recruitment of LRRK2 as well as LC3 onto single membranes of stressed lysosomes/phagosomes. This recruitment did not require FIP200-containing autophagy initiation complex, nor did it occur on double-membrane autophagosomes, suggesting independence from canonical autophagy. Consistently, LRRK2 recruitment was regulated by the V-ATPase-ATG16L1 axis, which requires the WD40 domain of ATG16L1 and specifically mediates ATG8 lipidation on single membranes. This mechanism was also responsible for the lysosomal stress-induced activation of LRRK2 and the resultant regulation of lysosomal secretion and enlargement. These results indicate that the V-ATPase-ATG16L1 axis serves a novel non-autophagic role in the maintenance of lysosomal homeostasis by recruiting LRRK2.


Adenosine Triphosphatases , Autophagy-Related Proteins , Autophagy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Lysosomes , Adenosine Triphosphatases/metabolism , Autophagosomes , Cell Cycle Proteins , Humans , Animals , Mice , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Autophagy-Related Proteins/metabolism
12.
J Community Genet ; 15(2): 195-204, 2024 Apr.
Article En | MEDLINE | ID: mdl-38225507

The APOE-ε4 allele(s) is a strong risk factor for Alzheimer's disease (AD). A significant point of access for this allele testing is through services provided by medical facilities in Japan, which advertise out-of-insurance APOE testing on their websites. There is a concern that website advertisements for APOE testing may influence the ability for individuals to adequately self-determine whether to undergo APOE testing. We conducted a cross-sectional survey on medical facility websites in Japan advertising APOE genetic testing. We predefined desirable features for advertisement descriptions based on legal regulations and guidelines published by relevant professional societies and evaluated each website according to these features. We identified 220 medical facilities that had posted advertisements on their websites for the provision of APOE genetic testing, of which 85% were small clinics. Contact information, details, and costs of testing were described in most of the websites. Meanwhile, features such as "explaining APOE as a risk gene," "notes on interpreting APOE results," or "explaining examination methods" (e.g., blood sampling) were described to a variable degree depending on individual facilities. "Notes on genetic testing" or "referring to genetic counseling" were hardly referred to, and specialists with appropriate expertise were considered to participate in clinical practice in approximately one-third of these facilities providing APOE testing services. These website evaluation results showed moderate to substantial reliability between independent raters. These results suggest that self-determination of pursuing out-of-insurance APOE testing at some medical facilities in Japan may possibly be influenced in an inappropriate manner, at least in its entry route of taking the test.

13.
J Neurosci ; 43(47): 7894-7898, 2023 11 22.
Article En | MEDLINE | ID: mdl-37968119

Alzheimer's disease (AD) is the major cause of dementia that is now threatening the lives of billions of elderly people on the globe, and recent progress in the elucidation of the pathomechanism of AD is now opening venue to tackle the disease by developing and implementing "disease-modifying therapies" that directly act on the pathophysiology and slow down the progression of neurodegeneration. A recent example is the success of clinical trials of anti-amyloid b antibody drugs, whereas other therapeutic targets, e.g., inflammation and tau, are being actively investigated. In this dual perspective session, we plan to have speakers from leading pharmas in the field representing distinct investments in the AD space, which will be followed by the comment from scientific leadership of the Alzheimer's Association who will speak on behalf of all stakeholders. Neuroscientists participating in the Society for Neuroscience may be able to gain insights into the cutting edge of the therapeutic approaches to AD and neurodegenerative disorders, and discuss future contribution of neuroscience to this field.


Alzheimer Disease , Humans , Aged , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Inflammation/drug therapy , tau Proteins
14.
Yakugaku Zasshi ; 143(12): 1057-1067, 2023 Dec 01.
Article Ja | MEDLINE | ID: mdl-37839871

Mucuna pruriens (MP) is leguminous plant which contains 5% of L-3,4-dihydroxyphenylalanine (levodopa) in its seeds. It may have a potential to be used as an alternative therapy for Parkinson's disease (PD). Meanwhile, there is a concern in terms of public health that MP products can be overused by patients with PD. As an entry for patients with PD to acquire MP products in Japan, they are often purchased via internet auctions or free markets. MP products are not reagrded as 'pharmatheutical' by Japanese law as long as the specific legal requirements on advertisements are met, so that the MP products can be advertised or sold without any permission from the authorities. In this study, we aimed to conduct internet survey as to the complianse status of these legal requirements. Several major internet auction or free market websites in Japan were surveyed in May-June 2023 by the authors, and 1157 MP product pages were examined. We found approximately 30-40% of the MP products were suspected to have potential legal risks in terms of their advertisements in their website descriptions, such as claiming pharmatheutical efficacy or describing pharmatheutical-like dosages. In addition, approximately 30-40% of the MP products also did not refer to cautions not to take MP products excessively because of the levodopa ingredients. Current study suggested the need of careful description of the MP products in the auction or free market websites for the MP products exhibitors or sellers, in order to fullfill legal requirements as well as to prevent MP abuse.


Mucuna , Parkinson Disease , Humans , Levodopa/therapeutic use , Advertising , Phytotherapy , Japan , Parkinson Disease/drug therapy , Plant Extracts/therapeutic use
15.
J Neurosci ; 43(43): 7226-7241, 2023 10 25.
Article En | MEDLINE | ID: mdl-37699718

The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-ß/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aß fibril formation in vitro, and IRS-2 deficiency suppressed the aggregation process of Aß in the brains of male APP transgenic mice as revealed by injection of aggregation seeds in vivo Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aß aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENT The insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-ß/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aß fibrils. This study presents a novel mechanism by which IIS regulates Aß accumulation, which may involve altered brain ECM expression.


Alzheimer Disease , Male , Mice , Animals , Alzheimer Disease/metabolism , Insulin , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Plaque, Amyloid/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Mice, Transgenic , Disease Models, Animal , Transforming Growth Factor beta/metabolism , Amyloid beta-Protein Precursor/metabolism
16.
Stem Cell Reports ; 18(9): 1854-1869, 2023 09 12.
Article En | MEDLINE | ID: mdl-37657448

The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.


Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Astrocytes , Calcium-Binding Proteins , Cell Adhesion Molecules , Genotype
17.
N Engl J Med ; 389(12): 1096-1107, 2023 Sep 21.
Article En | MEDLINE | ID: mdl-37458272

BACKGROUND: Trials of monoclonal antibodies that target various forms of amyloid at different stages of Alzheimer's disease have had mixed results. METHODS: We tested solanezumab, which targets monomeric amyloid, in a phase 3 trial involving persons with preclinical Alzheimer's disease. Persons 65 to 85 years of age with a global Clinical Dementia Rating score of 0 (range, 0 to 3, with 0 indicating no cognitive impairment and 3 severe dementia), a score on the Mini-Mental State Examination of 25 or more (range, 0 to 30, with lower scores indicating poorer cognition), and elevated brain amyloid levels on 18F-florbetapir positron-emission tomography (PET) were enrolled. Participants were randomly assigned in a 1:1 ratio to receive solanezumab at a dose of up to 1600 mg intravenously every 4 weeks or placebo. The primary end point was the change in the Preclinical Alzheimer Cognitive Composite (PACC) score (calculated as the sum of four z scores, with higher scores indicating better cognitive performance) over a period of 240 weeks. RESULTS: A total of 1169 persons underwent randomization: 578 were assigned to the solanezumab group and 591 to the placebo group. The mean age of the participants was 72 years, approximately 60% were women, and 75% had a family history of dementia. At 240 weeks, the mean change in PACC score was -1.43 in the solanezumab group and -1.13 in the placebo group (difference, -0.30; 95% confidence interval, -0.82 to 0.22; P = 0.26). Amyloid levels on brain PET increased by a mean of 11.6 centiloids in the solanezumab group and 19.3 centiloids in the placebo group. Amyloid-related imaging abnormalities (ARIA) with edema occurred in less than 1% of the participants in each group. ARIA with microhemorrhage or hemosiderosis occurred in 29.2% of the participants in the solanezumab group and 32.8% of those in the placebo group. CONCLUSIONS: Solanezumab, which targets monomeric amyloid in persons with elevated brain amyloid levels, did not slow cognitive decline as compared with placebo over a period of 240 weeks in persons with preclinical Alzheimer's disease. (Funded by the National Institute on Aging and others; A4 ClinicalTrials.gov number, NCT02008357.).


Alzheimer Disease , Antibodies, Monoclonal, Humanized , Aged , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Amyloid beta-Peptides , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Brain/diagnostic imaging , Brain/drug effects , Positron-Emission Tomography , Aged, 80 and over
18.
Neuron ; 111(18): 2781-2799, 2023 09 20.
Article En | MEDLINE | ID: mdl-37295421

Timely detection of the pathophysiological changes and cognitive impairment caused by Alzheimer's disease (AD) is increasingly pressing because of the advent of biomarker-guided targeted therapies that may be most effective when provided early in the disease. Currently, diagnosis and management of early AD are largely guided by clinical symptoms. FDA-approved neuroimaging and cerebrospinal fluid biomarkers can aid detection and diagnosis, but the clinical implementation of these testing modalities is limited because of availability, cost, and perceived invasiveness. Blood-based biomarkers (BBBMs) may enable earlier and faster diagnoses as well as aid in risk assessment, early detection, prognosis, and management. Herein, we review data on BBBMs that are closest to clinical implementation, particularly those based on measures of amyloid-ß peptides and phosphorylated tau species. We discuss key parameters and considerations for the development and potential deployment of these BBBMs under different contexts of use and highlight challenges at the methodological, clinical, and regulatory levels.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides , Cognitive Dysfunction/diagnosis , Biomarkers/cerebrospinal fluid , Delivery of Health Care , tau Proteins/cerebrospinal fluid , Peptide Fragments
19.
Clin Biochem ; 118: 110603, 2023 Aug.
Article En | MEDLINE | ID: mdl-37355215

OBJECTIVES: Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by progressive long-term memory loss and cognitive dysfunction. Neuroimaging tests for abnormal amyloid-ß (Aß) deposition are considered the most reliable methods for the diagnosis of AD; however, the cost for such testing is very high and generally not covered by national insurance systems. Accordingly, it is only recommended for individuals exhibiting clinical symptoms of AD supported by clinical cognitive assessments. Recently, it was suggested that dysregulated microRNA-485-3p (miRNA-485-3p) in the brain and cerebrospinal fluid is closely related to pathogenesis of AD. However, a relationship between circulating miRNA-485-3p in salivary exosome-enriched extracellular vesicles (EE-EV) and Aß deposition in the brain has not been observed. DESIGN & METHODS: Using quantitative real-time polymerase chain reaction, we analyzed miRNA-485-3p concentration in salivary EE-EV. We used receiver operating characteristic (ROC) curve analysis to evaluate its predictive value for Aß positron emission tomography (Aß-PET) positivity in patients with AD. RESULTS: Our results showed that the miRNA-485-3p concentration in salivary EE-EV isolated from patients with AD was significantly increased compared with that in the healthy controls (p < 0.0001). In the analysis of all participants, the miRNA-485-3p concentration was significantly increased in Aß-PET-positive participants compared to Aß-PET-negative participants (p < 0.0001). Further analysis using only AD patients also showed that the miRNA-485-3p concentration was significantly increased in Aß-PET-positive AD patients vs. Aß-PET-negative AD patients (p = 0.0063). The ROC curve analysis for differentiating Aß-PET-positive and negative participants showed that the area under the curve for miRNA-485-3p was 0.9217. CONCLUSION: These findings suggested that the miRNA-485-3p concentration in salivary EE-EV was closely related to Aß deposition in the brain and had high diagnostic accuracy for predicting Aß-PET positivity.


Alzheimer Disease , Cognitive Dysfunction , Exosomes , MicroRNAs , Neurodegenerative Diseases , Humans , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Exosomes/genetics , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Positron-Emission Tomography/methods , MicroRNAs/genetics
20.
J Cell Sci ; 136(14)2023 07 15.
Article En | MEDLINE | ID: mdl-37365944

Rab proteins are small GTPases that regulate a myriad of intracellular membrane trafficking events. Rab29 is one of the Rab proteins phosphorylated by leucine-rich repeat kinase 2 (LRRK2), a Parkinson's disease-associated kinase. Recent studies suggest that Rab29 regulates LRRK2, whereas the mechanism by which Rab29 is regulated remained unclear. Here, we report a novel phosphorylation in Rab29 that is not mediated by LRRK2 and occurs under lysosomal overload stress. Mass spectrometry analysis identified the phosphorylation site of Rab29 as Ser185, and cellular expression studies of phosphomimetic mutants of Rab29 at Ser185 unveiled the involvement of this phosphorylation in counteracting lysosomal enlargement. PKCα and PKCδ were deemed to be involved in this phosphorylation and control the lysosomal localization of Rab29 in concert with LRRK2. These results implicate PKCs in the lysosomal stress response pathway comprised of Rab29 and LRRK2, and further underscore the importance of this pathway in the mechanisms underlying lysosomal homeostasis.


Lysosomes , rab GTP-Binding Proteins , Phosphorylation , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Lysosomes/metabolism , Mutation
...