Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Metabolomics ; 20(5): 98, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123092

ABSTRACT

INTRODUCTION: Glacier ice algae, mainly Ancylonema alaskanum and Ancylonema nordenskiöldi, bloom on Greenland Ice Sheet bare ice surfaces. They significantly decrease surface albedo due to their purple-brown pigmentation, thus increasing melt. Little is known about their metabolic adaptation and factors controlling algal growth dynamics and pigment formation. A challenge in obtaining such data is the necessity of melting samples, which delays preservation and introduces bias to metabolomic analysis. There is a need to evaluate the physiological response of algae to melting and establish consistent sample processing strategies for metabolomics of ice microbial communities. OBJECTIVES: To address the impact of sample melting procedure on metabolic characterization and establish a processing and analytical workflow for endometabolic profiling of glacier ice algae. METHODS: We employed untargeted, high-resolution mass spectrometry and tested the effect of sample melt temperature (10, 15, 20 °C) and processing delay (up to 49 h) on the metabolome and lipidome, and complemented this approach with cell counts (FlowCam), photophysiological analysis (PAM) and diversity characterization. RESULTS AND CONCLUSION: We putatively identified 804 metabolites, with glycerolipids, glycerophospholipids and fatty acyls being the most prominent superclasses (> 50% of identified metabolites). Among the polar metabolome, carbohydrates and amino acid-derivatives were the most abundant. We show that 8% of the metabolome is affected by melt duration, with a pronounced decrease in betaine membrane lipids and pigment precursors, and an increase in phospholipids. Controlled fast melting at 10 °C resulted in the highest consistency, and is our recommendation for future supraglacial metabolomics studies.


Subject(s)
Ice Cover , Metabolomics , Metabolomics/methods , Metabolome , Lipidomics/methods , Greenland , Pigments, Biological/analysis , Pigments, Biological/metabolism , Pigmentation , Mass Spectrometry/methods
2.
Rapid Commun Mass Spectrom ; 38(20): e9876, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39180507

ABSTRACT

Non-targeted screenings (NTS) are essential tools in different fields, such as forensics, health and environmental sciences. NTSs often employ mass spectrometry (MS) methods due to their high throughput and sensitivity in comparison to, for example, nuclear magnetic resonance-based methods. As the identification of mass spectral signals, called annotation, is labour intensive, it has been used for developing supporting tools based on machine learning (ML). However, both the diversity of mass spectral signals and the sheer quantity of different ML tools developed for compound annotation present a challenge for researchers in maintaining a comprehensive overview of the field. In this work, we illustrate which ML-based methods are available for compound annotation in non-targeted MS experiments and provide a nuanced comparison of the ML models used in MS data analysis, unravelling their unique features and performance metrics. Through this overview we support researchers to judiciously apply these tools in their daily research. This review also offers a detailed exploration of methods and datasets to show gaps in current methods, and promising target areas, offering a starting point for developers intending to improve existing methodologies.


Subject(s)
Machine Learning , Mass Spectrometry , Mass Spectrometry/methods , Computer Simulation , Humans
3.
BMC Surg ; 24(1): 175, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835067

ABSTRACT

BACKGROUND: Pancreatic cancer is often accompanied by wasting conditions. While surgery is the primary curative approach, it poses a substantial risk of postoperative complications, hindering subsequent treatments. Therefore, identifying patients at high risk for complications and optimizing their perioperative general condition is crucial. Sarcopenia and other body composition abnormalities have shown to adversely affect surgical and oncological outcomes in various cancer patients. As most pancreatic tumours are located close to the neuronal control centre for the digestive tract, it is possible that neural infiltration in this area deranges bowel functions and contributes to malabsorption and malnutrition and ultimately worsen sarcopenia and weight loss. METHODS: A retrospective analysis of CT scans was performed for pancreatic cancer patients who underwent surgical tumour resection at a single high-volume centre from 2007 to 2023. Sarcopenia prevalence was assessed by skeletal muscle index (SMI), and visceral obesity was determined by the visceral adipose tissue area (VAT). Obesity and malnutrition were determined by the GLIM criteria. Sarcopenic obesity was defined as simultaneous sarcopenia and obesity. Postoperative complications, mortality and perineural tumour invasion, were compared among patients with body composition abnormalities. RESULTS: Of 437 patients studied, 46% were female, the median age was 69 (61;74) years. CT analysis revealed 54.9% of patients with sarcopenia, 23.7% with sarcopenic obesity and 45.9% with visceral obesity. Sarcopenia and sarcopenic obesity were more prevalent in elderly and male patients. Postoperative surgical complications occurred in 67.7% of patients, most of which were mild (41.6%). Severe complications occurred in 22.7% of cases and the mortality rate was 3.4%. Severe postoperative complications were significantly more common in patients with sarcopenia or sarcopenic obesity. Visceral obesity or malnutrition based on BMI alone, did not significantly impact complications. Perineural invasion was found in 80.1% of patients and was unrelated to malnutrition or body composition parameters. CONCLUSIONS: This is the first and largest study evaluating the associations of CT-based body mass analysis with surgical outcome and histopathological perineural tumour invasion in pancreatic cancer patients. The results suggest that elderly and male patients are at high risk for sarcopenia and should be routinely evaluated by CT before undergoing pancreatic surgery, irrespective of their BMI. Confirmation of the results in prospective studies is needed to assess if pancreatic cancer patients with radiographic sarcopenia benefit from preoperative amelioration of muscle mass and function by exercise and nutritional interventions.


Subject(s)
Body Composition , Pancreatectomy , Pancreatic Neoplasms , Postoperative Complications , Sarcopenia , Humans , Male , Female , Aged , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/pathology , Retrospective Studies , Middle Aged , Sarcopenia/epidemiology , Sarcopenia/etiology , Sarcopenia/complications , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Pancreatectomy/methods , Neoplasm Invasiveness , Obesity/complications , Tomography, X-Ray Computed
4.
Environ Int ; 181: 108288, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918065

ABSTRACT

A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.


Subject(s)
Environmental Monitoring , Fishes , Animals , Humans , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Mass Spectrometry/methods
5.
Front Neurosci ; 17: 1133086, 2023.
Article in English | MEDLINE | ID: mdl-37694109

ABSTRACT

The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, ß1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted ß1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for ß1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.

6.
Metabolites ; 12(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35629912

ABSTRACT

The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer-based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN.

7.
Metabolites ; 12(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35629930

ABSTRACT

As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field.

8.
iScience ; 24(11): 103314, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34805785

ABSTRACT

Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes its biosynthesis and a CL remodeling process. Here we studied the impact of CL biosynthesis and the enzyme cardiolipin synthase (CLS) on cardiac function. CLS and cardiac CL species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress, and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance, and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.

9.
Front Neurosci ; 15: 722366, 2021.
Article in English | MEDLINE | ID: mdl-34621151

ABSTRACT

Investigating human brain tissue is challenging due to the complexity and the manifold interactions between structures across different scales. Increasing evidence suggests that brain function and microstructural features including biomechanical features are related. More importantly, the relationship between tissue mechanics and its influence on brain imaging results remains poorly understood. As an important example, the study of the brain tissue response to blood flow could have important theoretical and experimental consequences for functional magnetic resonance imaging (fMRI) at high spatial resolutions. Computational simulations, using realistic mechanical models can predict and characterize the brain tissue behavior and give us insights into the consequent potential biases or limitations of in vivo, high-resolution fMRI. In this manuscript, we used a two dimensional biomechanical simulation of an exemplary human gyrus to investigate the relationship between mechanical tissue properties and the respective changes induced by focal blood flow changes. The model is based on the changes in the brain's stiffness and volume due to the vasodilation evoked by neural activity. Modeling an exemplary gyrus from a brain atlas we assessed the influence of different potential mechanisms: (i) a local increase in tissue stiffness (at the level of a single anatomical layer), (ii) an increase in local volume, and (iii) a combination of both effects. Our simulation results showed considerable tissue displacement because of these temporary changes in mechanical properties. We found that the local volume increase causes more deformation and consequently higher displacement of the gyrus. These displacements introduced considerable artifacts in our simulated fMRI measurements. Our results underline the necessity to consider and characterize the tissue displacement which could be responsible for fMRI artifacts.

10.
J Am Heart Assoc ; 10(14): e019473, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34227403

ABSTRACT

Background It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega-3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective ß-agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol-induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography-high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol-induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction.


Subject(s)
Aniline Compounds/pharmacology , Fatty Acids/metabolism , Heart Diseases/prevention & control , Isoproterenol , Myocardium/metabolism , Thiazoles/pharmacology , Animals , Cellular Reprogramming , Disease Models, Animal , Fibrosis , Heart Diseases/chemically induced , Heart Diseases/pathology , Liver X Receptors/agonists , Male , Mice , Mice, 129 Strain , Myocardium/pathology
11.
iScience ; 24(4): 102288, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33889813

ABSTRACT

The cross talk between adipose tissue and the heart has an increasing importance for cardiac function under physiological and pathological conditions. This study characterizes the role of fat body lipolysis for cardiac function in Drosophila melanogaster. Perturbation of the function of the key lipolytic enzyme, brummer (bmm), an ortholog of the mammalian ATGL (adipose triglyceride lipase) exclusively in the fly's fat body, protected the heart against starvation-induced dysfunction. We further provide evidence that this protection is caused by the preservation of glycerolipid stores, resulting in a starvation-resistant maintenance of energy supply and adequate cardiac ATP synthesis. Finally, we suggest that alterations of lipolysis are tightly coupled to lipogenic processes, participating in the preservation of lipid energy substrates during starvation. Thus, we identified the inhibition of adipose tissue lipolysis and subsequent energy preservation as a protective mechanism against cardiac dysfunction during catabolic stress.

12.
Chemistry ; 27(36): 9414-9421, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33786901

ABSTRACT

Zeolitic imidazolate framework (ZIF) hybrid fluorescent nanoparticles and ZIF antibody conjugates have been synthesized, characterized, and employed in lateral-flow immunoassay (LFIA). The bright fluorescence of the conjugates and the possibility to tailor their mobility gives a huge potential for diagnostic assays. An enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase (HRP) as label, proved the integrity, stability, and dispersibility of the antibody conjugates, LC-MS/MS provided evidence that a covalent link was established between these metal-organic frameworks and lysine residues in IgG antibodies.


Subject(s)
Metal-Organic Frameworks , Zeolites , Chromatography, Liquid , Horseradish Peroxidase , Tandem Mass Spectrometry
13.
Cancers (Basel) ; 13(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652667

ABSTRACT

MACC1 is a prognostic and predictive metastasis biomarker for more than 20 solid cancer entities. However, its role in cancer metabolism is not sufficiently explored. Here, we report on how MACC1 impacts the use of glucose, glutamine, lactate, pyruvate and fatty acids and show the comprehensive analysis of MACC1-driven metabolic networks. We analyzed concentration-dependent changes in nutrient use, nutrient depletion, metabolic tracing employing 13C-labeled substrates, and in vivo studies. We found that MACC1 permits numerous effects on cancer metabolism. Most of those effects increased nutrient uptake. Furthermore, MACC1 alters metabolic pathways by affecting metabolite production or turnover from metabolic substrates. MACC1 supports use of glucose, glutamine and pyruvate via their increased depletion or altered distribution within metabolic pathways. In summary, we demonstrate that MACC1 is an important regulator of metabolism in cancer cells.

14.
Acta Biochim Pol ; 68(1): 115-118, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33595227

ABSTRACT

Lipid droplets, the dynamic organelles that store triglycerides (TG) and cholesterol esters (CE), are highly accumulated in colon cancer cells. This work studies the TG and CE subspecies profile in colon carcinoma cell lines, SW480 derived from primary tumor, and SW620 derived from a metastasis of the same tumor. It was previously reported that the total TG and CE content is dramatically higher in SW620 cells; however, TG and CE subspecies profile has not been investigated in detail. The work presented here confirms that the total TG and CE content is significantly higher in the SW620 cells. Moreover, the fatty acid (FA) composition of TG is significantly altered in the SW620 cells, with significant decrease in the abundance of saturated triglycerides. This resulted in a significantly decreased TG saturation index in the SW620 cells. The saturation index of CE was also significantly decreased in the SW620 cells.


Subject(s)
Cholesterol Esters/metabolism , Colonic Neoplasms/metabolism , Fatty Acids/biosynthesis , Triglycerides/chemistry , Triglycerides/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , Down-Regulation/genetics , Humans , Lipase/genetics , Lipid Droplets/metabolism , Monoacylglycerol Lipases/genetics , Signal Transduction/genetics , Sterol Esterase/genetics , Transcriptome
15.
Proc Natl Acad Sci U S A ; 116(41): 20750-20759, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548375

ABSTRACT

Human cortex appears to thin during childhood development. However, the underlying microstructural mechanisms are unknown. Using functional magnetic resonance imaging (fMRI), quantitative MRI (qMRI), and diffusion MRI (dMRI) in children and adults, we tested what quantitative changes occur to gray and white matter in ventral temporal cortex (VTC) from childhood to adulthood, and how these changes relate to cortical thinning. T1 relaxation time from qMRI and mean diffusivity (MD) from dMRI provide independent and complementary measurements of microstructural properties of gray and white matter tissue. In face- and character-selective regions in lateral VTC, T1 and MD decreased from age 5 to adulthood in mid and deep cortex, as well as in their adjacent white matter. T1 reduction also occurred longitudinally in children's brain regions. T1 and MD decreases 1) were consistent with tissue growth related to myelination, which we verified with adult histological myelin stains, and 2) were correlated with apparent cortical thinning. In contrast, in place-selective cortex in medial VTC, we found no development of T1 or MD after age 5, and thickness was related to cortical morphology. These findings suggest that lateral VTC likely becomes more myelinated from childhood to adulthood, affecting the contrast of MR images and, in turn, the apparent gray-white boundary. These findings are important because they suggest that VTC does not thin during childhood but instead gets more myelinated. Our data have broad ramifications for understanding both typical and atypical brain development using advanced in vivo quantitative measurements and clinical conditions implicating myelin.


Subject(s)
Brain/growth & development , Gray Matter/growth & development , Magnetic Resonance Imaging/methods , Myelin Sheath/metabolism , Visual Cortex/growth & development , White Matter/growth & development , Adult , Brain/anatomy & histology , Child , Child, Preschool , Female , Gray Matter/anatomy & histology , Gray Matter/metabolism , Humans , Image Processing, Computer-Assisted , Male , Visual Cortex/anatomy & histology , Visual Cortex/metabolism , White Matter/anatomy & histology , White Matter/metabolism , Young Adult
16.
BMC Cancer ; 19(1): 501, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31138183

ABSTRACT

BACKGROUND: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. METHODS: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. RESULTS: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. CONCLUSIONS: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged.


Subject(s)
Culture Media, Serum-Free/pharmacology , Neoplasms/metabolism , Phospholipids/analysis , Triglycerides/analysis , A549 Cells , Cell Culture Techniques , Cell Hypoxia , Cell Line, Tumor , Gas Chromatography-Mass Spectrometry , Humans , Lipid Metabolism/drug effects
17.
Int J Cancer ; 145(1): 221-231, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30560999

ABSTRACT

Metastasis is the main cause of death from colorectal cancer (CRC). About 20% of stage II CRC patients develop metastasis during the course of disease. We performed metabolic profiling of plasma samples from non-metastasized and metachronously metastasized stage II CRC patients to assess the potential of plasma metabolites to serve as biomarkers for stratification of stage II CRC patients according to metastasis risk. We compared the metabolic profiles of plasma samples prospectively obtained prior to metastasis formation from non-metastasized vs. metachronously metastasized stage II CRC patients of the German population-based case-control multicenter DACHS study retrospectively. Plasma samples were analyzed from stage II CRC patients for whom follow-up data including the information on metachronous metastasis were available. To identify metabolites distinguishing non-metastasized from metachronously metastasized stage II CRC patients robust supervised classifications using decision trees and support vector machines were performed and verified by 10-fold cross-validation, by nested cross-validation and by traditional validation using training and test sets. We found that metabolic profiles distinguish non-metastasized from metachronously metastasized stage II CRC patients. Classification models from decision trees and support vector machines with 10-fold cross-validation gave average accuracy of 0.75 (sensitivity 0.79, specificity 0.7) and 0.82 (sensitivity 0.85, specificity 0.77), respectively, correctly predicting metachronous metastasis in stage II CRC patients. Taken together, plasma metabolic profiles distinguished non-metastasized and metachronously metastasized stage II CRC patients. The classification models consisting of few metabolites stratify non-invasively stage II CRC patients according to their risk for metachronous metastasis.


Subject(s)
Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Aged , Aged, 80 and over , Case-Control Studies , Chromatography, Liquid , Colorectal Neoplasms/epidemiology , Female , Germany/epidemiology , Humans , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Tandem Mass Spectrometry
18.
Ther Drug Monit ; 41(1): 53-58, 2019 02.
Article in English | MEDLINE | ID: mdl-30422962

ABSTRACT

BACKGROUND: Limited data exist on the pharmacokinetic profile of novel direct-acting antivirals in kidney transplant recipients. Daclatasvir is primarily eliminated through the biliary route and sofosbuvir through the renal route; here, we report the pharmacokinetic profile of combined treatment with these compounds in a prospective study of hepatitis C virus (HCV)-positive kidney transplant recipients (EudraCT: 2014-004551-32). METHODS: In this study, plasma samples of 16 HCV-positive kidney transplant recipients receiving daclatasvir and sofosbuvir were collected at 4 time points at days 1, 7, 14, 21, 56, and 84 after start of treatment. Inclusion criteria were stable graft function and an estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m. Daclatasvir, sofosbuvir, and GS-331007 (inactive metabolite of sofosbuvir) plasma concentrations were determined using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. RESULTS: All patients showed a rapid virological response with HCV RNA below the detection limit 21 days after the start of therapy (medium time to viral clearance). No difference of the areas under the concentration-time curve (AUC) of daclatasvir, sofosbuvir, and GS-331007 was observed between patients with an eGFR below or ≥60 mL/min. For GS-331007, no relevant changes of trough levels were observed over time. Mean GS-331007 trough levels were 339.5 ± 174.9 ng/mL in patients with an eGFR ≥60 mL/min and 404.3 ± 226 ng/mL in patients with an eGFR <60 mL/min at day 7 (P = 0.52). At day 84, GS-331007 trough levels were 357.8 ± 200.8 and 404.2 ± 70.2 ng/mL in patients with an eGFR ≥60 mL/min and in patients with an eGFR <60 mL/min, respectively (P = 0.51). The accumulation ratios of renally eliminated GS-331007 for AUC and Cmax did not significantly differ between the 2 eGFR groups at day 7. CONCLUSIONS: An impaired eGFR (30-60 mL/min) does not lead to a dose accumulation of daclatasvir, sofosbuvir, and GS-331007. This study provides the rationale for future studies investigating the pharmacokinetic profile of sofosbuvir-based HCV treatment in kidney transplant recipients with an eGFR <30 mL/min.


Subject(s)
Antiviral Agents/pharmacokinetics , Hepatitis C, Chronic/metabolism , Imidazoles/pharmacokinetics , Sofosbuvir/pharmacokinetics , Uridine/analogs & derivatives , Antiviral Agents/therapeutic use , Carbamates , Cohort Studies , Drug Therapy, Combination/methods , Female , Glomerular Filtration Rate/drug effects , Hepacivirus/drug effects , Hepatitis C, Chronic/blood , Hepatitis C, Chronic/drug therapy , Humans , Imidazoles/therapeutic use , Kidney Transplantation/methods , Male , Middle Aged , Prospective Studies , Pyrrolidines , Sofosbuvir/therapeutic use , Transplant Recipients , Uridine/pharmacokinetics , Uridine/therapeutic use , Valine/analogs & derivatives
19.
Methods Mol Biol ; 1778: 285-296, 2018.
Article in English | MEDLINE | ID: mdl-29761446

ABSTRACT

Raw data from metabolomics experiments are initially subjected to peak identification and signal deconvolution to generate raw data matrices m × n, where m are samples and n are metabolites. We describe here simple statistical procedures on such multivariate data matrices, all provided as functions in the programming environment R, useful to normalize data, detect biomarkers, and perform sample classification.


Subject(s)
Mass Spectrometry/methods , Metabolomics/methods , Multivariate Analysis
20.
Anal Chem ; 90(12): 7253-7260, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29799187

ABSTRACT

"Fluxomics" refers to the systematic analysis of metabolic fluxes in a biological system and may uncover novel dynamic properties of metabolism that remain undetected in conventional metabolomic approaches. In labeling experiments, tracer molecules are used to track changes in the isotopologue distribution of metabolites, which allows one to estimate fluxes in the metabolic network. Because unidentified compounds cannot be mapped on pathways, they are often neglected in labeling experiments. However, using recent developments in de novo annotation may allow to harvest the information present in these compounds if they can be identified. Here, we present a novel tool (HiResTEC) to detect tracer incorporation in high-resolution mass spectrometry data sets. The software automatically extracts a comprehensive, nonredundant list of all compounds showing more than 1% tracer incorporation in a nontargeted fashion. We explain and show in an example data set how mass precision and other filter heuristics, calculated on the raw data, can efficiently be used to reduce redundancy and noninformative signals by 95%. Ultimately, this allows to quickly investigate any labeling experiment for a complete set of labeled compounds (here 149) with acceptable false positive rates. We further re-evaluate a published data set from liquid chromatography-electrospray ionization (LC-ESI) to demonstrate broad applicability of our tool and emphasize importance of quality control (QC) tests. HiResTEC is provided as a package in the open source software framework R and is freely available on CRAN.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Algorithms , Cell Line, Tumor , Chromatography, Liquid , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL