Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33295943

ABSTRACT

The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Pancreas/pathology , T-Lymphocytes/immunology , Trans-Activators/metabolism , Transcription, Genetic , Alleles , Amino Acid Sequence , Animals , Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Crosses, Genetic , Cytokines/metabolism , Diabetes Mellitus, Type 1/prevention & control , Disease Models, Animal , Female , Gene Deletion , Germ Cells/metabolism , Humans , Inflammation Mediators/metabolism , Lymph Nodes/metabolism , Lymphocyte Activation , Male , Mice, Inbred C57BL , Mice, Inbred NOD , Ovalbumin , Pancreas/metabolism , Peptides/pharmacology , Receptors, Antigen, T-Cell/metabolism , Spleen/pathology , Trans-Activators/deficiency
2.
Exp Hematol ; 76: 38-48.e2, 2019 08.
Article in English | MEDLINE | ID: mdl-31295506

ABSTRACT

A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/physiology , Octamer Transcription Factor-1/physiology , Animals , Bone Marrow/pathology , Bone Marrow Failure Disorders/etiology , Bone Marrow Failure Disorders/genetics , CDX2 Transcription Factor/biosynthesis , CDX2 Transcription Factor/genetics , Cell Transformation, Neoplastic/genetics , CpG Islands , DNA Methylation , Disease Progression , Fluorouracil/toxicity , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/drug effects , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Leukemia, Experimental/genetics , Leukemia, Experimental/prevention & control , Leukemia, Myeloid, Acute/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice, Inbred C57BL , Octamer Transcription Factor-1/deficiency , Oncogene Proteins, Fusion/physiology , Promoter Regions, Genetic , Radiation Chimera
3.
J Neuroinflammation ; 16(1): 133, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31266507

ABSTRACT

BACKGROUND: Treatments for autoimmune diseases aim to dampen autoreactivity while preserving normal immune function. In CD4+ T cells, the transcription factor Oct1/Pou2f1 is a dispensable transcription factor for T cell development and response to primary infection, but promotes expression of target genes, including Il2 and Ifng, under conditions of antigen reencounter. As a result, they are more strongly expressed upon secondary stimulation. Such repeated antigen encounters occur in memory recall responses, in autoimmunity where self-antigen can be recognized multiple times, and in chronic infection where foreign antigen is persistent. Based on these previous findings, we hypothesized that Oct1 loss would protect animals from autoimmunity but maintain normal responses to pathogens in the CNS. OBJECTIVE: We used a conditional mouse Oct1 (Pou2f1) allele and a CD4-Cre driver to determine the effect of T cell-specific Oct1 loss on autoimmune- and viral-induced neuroinflammation using an autoantigen-driven EAE model of autoimmunity and a JHMV model of viral infection. RESULTS: Oct1 conditional deletion mitigated clinical scores and reduced infiltrating T cells and cytokine production in the EAE model. Consistently, Oct1-deficient CD4+ T cells stimulated in vitro showed increased expression of markers associated with T cell anergy, particularly in the absence of co-stimulatory signals. In contrast, anti-viral T cell effector functions are intact in the absence of Oct1, with no changes in neuroinflammation, infiltrating T cells or cytokine production. CONCLUSION: Our findings uncover a significant difference between the effect of Oct1 loss on autoimmune and anti-pathogen responses, which potentially could be exploited for therapeutic benefit.


Subject(s)
Autoimmunity/physiology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Inflammation Mediators/metabolism , Nerve Growth Factors/metabolism , Octamer Transcription Factor-1/deficiency , Amino Acid Sequence , Animals , CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Growth Factors/genetics , Nerve Growth Factors/immunology , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/immunology
4.
J Gen Virol ; 98(3): 435-446, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27902324

ABSTRACT

Epstein-Barr virus-induced gene 2 (EBI2) is an important chemotactic receptor that is involved in proper B-cell T-cell interactions. Epstein-Barr virus (EBV) has been shown to upregulate this gene upon infection of cell lines, but the timing and mechanism of this upregulation, as well as its importance to EBV infection, remain unknown. This work investigated EBV's manipulation of EBI2 expression of primary naive B cells. EBV infection induces EBI2 expression resulting in elevated levels of EBI2 after 24 h until 7 days post-infection, followed by a dramatic decline (P=0.027). Increased EBI2 expression was not found in non-specifically stimulated B cells or when irradiated virus was used. The EBV lytic gene BRRF1 exhibited a similar expression pattern to EBI2 (R2=0.4622). BRRF1-deficient EBV could not induce EBI2. However, B cells transduced with BRRF1 showed elevated expression of EBI2 (P=0.042), a result that was not seen with transduction of a different EBV lytic transfection factor, BRLF1. Based on these results, we conclude that EBI2 expression is directly influenced by EBV infection and that BRRF1 is necessary and sufficient for EBI2 upregulation during infection.


Subject(s)
Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Gene Expression Regulation , Herpesvirus 4, Human/metabolism , Receptors, G-Protein-Coupled/genetics , Trans-Activators/metabolism , Viral Proteins/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cell Movement , HEK293 Cells , Humans , Trans-Activators/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...