Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Expert Opin Drug Deliv ; : 1-23, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39039919

ABSTRACT

INTRODUCTION: Gemini surfactants (GS) are an elite class of amphiphilic molecules that have shown up as a potential candidate in the field of drug delivery because of their exceptional physicochemical properties. They comprise two hydrophilic headgroups connected by an adaptable spacer and hydrophobic tails that has shown promising results in delivering different therapeutic agents to cancer cells at preclinical level. However further studies are in demand to unlock the full potential of GS in this field. AREAS COVERED: This review summarizes the new advancements in GS as drug carriers in cancer therapy, their capacity to overcome conventional shortcomings and the demand for innovative approaches in disease treatment. A detailed list of GS-based formulations along with a brief description on oligomeric surfactants have also been provided in this review. This article summarizes data from studies identified through literature database searches including PubMed and Google Scholar (2010-2023). EXPERT OPINION: There are major challenges that need to be addressed in this field which restrict their progression toward clinical phase. Further research can focus on developing a theranostic system that can provide simultaneous real-time monitoring along with treatment care. Nevertheless, ensuring the safety parameters of these nanocarriers followed by their regulatory approval is a time-consuming and expensive process. A collaborative approach between regulatory bodies, research institutions, and pharmaceutical companies can speed up the process in the upcoming years.

2.
Int J Biol Macromol ; 274(Pt 1): 133188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880456

ABSTRACT

Morphine addiction poses a significant challenge to global healthcare. Current opioid substitution therapies, such as buprenorphine, naloxone and methadone are effective but often lead to dependence. Thus, exploring alternative treatments for opioid addiction is crucial. We have developed a novel vaccine that presents morphine and Pam3Cys (a TLR-2 agonist) on the surface of Acr1 nanoparticles. This vaccine has self-adjuvant properties and targets TLR-2 receptors on antigen-presenting cells, particularly dendritic cells. Our vaccination strategy promotes the proliferation and differentiation of morphine-specific B-cells and Acr1-reactive CD4 T-cells. Additionally, the vaccine elicited the production of high-affinity anti-morphine antibodies, effectively eliminating morphine from the bloodstream and brain in mice. It also reduced the expression of addiction-associated µ-opioid receptor and dopamine genes. The significant increase in memory CD4 T-cells and B-cells indicates the vaccine's ability to induce long-lasting immunity against morphine. This vaccine holds promise as a prophylactic measure against morphine addiction.


Subject(s)
Dendritic Cells , Morphine , Nanovaccines , Toll-Like Receptor 2 , Animals , Mice , B-Lymphocytes/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Morphine/pharmacology , Morphine Dependence/immunology , Morphine Dependence/drug therapy , Nanovaccines/immunology , Receptors, Opioid, mu/immunology , Receptors, Opioid, mu/metabolism , Toll-Like Receptor 2/metabolism
3.
Carbohydr Polym ; 338: 122196, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763723

ABSTRACT

Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 µg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.


Subject(s)
Hyaluronic Acid , Nanoparticles , Paclitaxel , Triple Negative Breast Neoplasms , Triterpenes , Ursolic Acid , Triterpenes/chemistry , Triterpenes/pharmacology , Hyaluronic Acid/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Nanoparticles/chemistry , Animals , Female , Paclitaxel/pharmacology , Paclitaxel/chemistry , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Cell Line, Tumor , Drug Liberation , Apoptosis/drug effects , Mice , Drug Carriers/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Mice, Inbred BALB C , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/chemistry
4.
Mol Pharm ; 21(6): 2699-2712, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38747900

ABSTRACT

This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.


Subject(s)
Deoxycytidine , Gemcitabine , Nanoparticles , Pancreatic Neoplasms , Phospholipids , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Deoxycytidine/pharmacokinetics , Deoxycytidine/administration & dosage , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Nanoparticles/chemistry , Animals , Humans , Cell Line, Tumor , Phospholipids/chemistry , Mice , Particle Size , Apoptosis/drug effects , Drug Carriers/chemistry , Lipids/chemistry , Drug Liberation , Male , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Drug Stability , Rats , Liposomes
5.
Int J Pharm ; 655: 124026, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38518872

ABSTRACT

Apremilast (APR) is a potent anti-psoriatic agent that inhibits the phosphodiesterase 4 enzyme. Due to the poor oral bioavailability and associated systemic side effects the clinical applicability of APR has been constrained. Nanotechnology-based carrier system presents a novel option to increase the efficacy of the topical treatment of APR. The current investigation deals with the development of fatty acid-surfactant conjugate-based hybrid mixed micellar gel (HMMG) for the topical delivery of APR. The developed micelles exhibited an average size of 83.59 ± 4.46 nm, PDI of 0.239 ± 0.047, % entrapment efficiency of âˆ¼ 94.78 ± 3.98 %, with % practical drug loading of ∼11.37 ± 3.14 %. TEM analysis revealed the spherical shape of micelles. The hybrid micelles were further loaded in a carbopol®934P gel base for ease of application. Ex vivo permeation study revealed enhanced permeation and âˆ¼ 38-fold higher retention in deeper layers of skin from a hybrid micellar gel. In vivo, assessment demonstrated augmented efficacy of APR-HMMG as compared to 0.1 % betamethasone valerate. Also, APR-HMMG showed no sign of irritation, suggesting superior safety as a topical application. Thus, the proposed formulation strategy represents a viable avenue for enhancing the therapeutic efficacy of various anti-psoriatic moieties.


Subject(s)
Psoriasis , Pulmonary Surfactants , Thalidomide/analogs & derivatives , Humans , Micelles , Fatty Acids , Drug Carriers , Surface-Active Agents , Skin , Gels , Psoriasis/drug therapy , Particle Size
6.
Biomater Adv ; 159: 213822, 2024 May.
Article in English | MEDLINE | ID: mdl-38442461

ABSTRACT

Certain aggressive cancers, such as triple-negative breast cancer (TNBC), heavily bank on glutamine for their proliferation and survival. In this context, TNBC functions as a "glutamine trap," extracting circulating glutamine at a rate surpassing that of any other organ. Moreover, the overexpression of Alanine, Serine, Cysteine Transporter 2 (ASCT2), a key player in glutamine uptake, further underscores the significance of targeted therapy to enhance TNBC treatment. This led to the exploration of a novel approach involving hydrophobized Pluronic-based mixed micelles achieved through the use of docosahexaenoic acid and stapled with glutamine for displaying inherent ASCT2 targeting ability-a formulation termed LPT G-MM. LPT G-MM exhibited optimal characteristics, including a size of 163.66 ± 10.34 nm, a polydispersity index of 0.237 ± 0.083, and an enhanced drug loading capacity of approximately 15 %. Transmission electron microscopy validated the spherical shape of these micelles. In vitro release studies demonstrated drug release in a sustained manner without the risk of hemolysis. Importantly, LPT G-MM displayed heightened cellular uptake, increased cytotoxicity, a lower IC50 value, elevated reactive oxygen species, induced mitochondrial membrane depolarization, and a greater apoptosis index in TNBC cell lines compared to free LPT. The pharmacokinetic profile of LPT G-MM revealed a substantial rise in half-life (t1/2) by approximately 1.48-fold and an elevation in the area under the curve [AUC(0→∞)] by approximately 1.19-fold. Moreover, there was a significant reduction in the percentage of tumor volume by approximately 7.26-fold, along with decreased serum toxicity markers compared to free LPT. In summary, LPT G-MM demonstrated promising potential in boosting payload capacities and targeting specificity in the context of TNBC treatment.


Subject(s)
Micelles , Triple Negative Breast Neoplasms , Humans , Lapatinib/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Glutamine/therapeutic use , Cell Line, Tumor , Apoptosis
8.
Biomater Adv ; 156: 213700, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042001

ABSTRACT

In this study, we investigated the potential of the sorafenib (SOR) and simvastatin (SIM) combination to induce ferroptosis-mediated cancer therapy. To enhance targeted drug delivery, we encapsulated the SOR + SIM combination within 4-carboxy phenylboronic acid (CPBA) modified PLGA nanoparticles (CPBA-PLGA(SOR + SIM)-NPs). The developed CPBA-PLGA(SOR + SIM)-NPs exhibited a spherical shape with a size of 213.1 ± 10.9 nm, a PDI of 0.22 ± 0.03, and a Z-potential of -22.9 ± 3.2 mV. Notably, these nanoparticles displayed faster drug release at acidic pH compared to physiological pH. In cellular experiments, CPBA-PLGA(SOR + SIM)-NPs demonstrated remarkable improvements, leading to a 2.51, 2.69, and 2.61-fold decrease in IC50 compared to SOR alone, and a 7.50, 16.71, and 5.11-fold decrease in IC50 compared to SIM alone in MDA-MB-231, A549, and HeLa cells, respectively. Furthermore, CPBA-PLGA(SOR + SIM)-NPs triggered a reduction in glutathione (GSH) levels, an increase in malondialdehyde (MDA) levels, and mitochondrial membrane depolarization in all three cell lines. Pharmacokinetic evaluation revealed a 2.50- and 2.63-fold increase in AUC0-∞, as well as a 1.53- and 2.46-fold increase in mean residence time (MRT) for SOR and SIM, respectively, compared to the free drug groups. Notably, the CPBA-PLGA(SOR + SIM)-NPs group exhibited significant reduction in tumor volume, approximately 9.17, 2.45, and 1.63-fold lower than the control, SOR + SIM, and PLGA(SOR + SIM)-NPs groups, respectively. Histological examination and biomarker analysis showed no significant differences compared to the control group, suggesting the biocompatibility of the developed particles for in-vivo applications. Altogether, our findings demonstrate that CPBA-PLGA(SOR + SIM)-NPs hold tremendous potential as an efficient drug delivery system for inducing ferroptosis, providing a promising therapeutic option for cancer treatment.


Subject(s)
Ferroptosis , Nanoparticles , Humans , HeLa Cells , Drug Delivery Systems , Simvastatin/pharmacology
9.
Drug Deliv Transl Res ; 14(2): 510-523, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37605040

ABSTRACT

Breast cancer is challenging to treat accompanied with poor clinical outcomes. Paclitaxel (PTX) is a first-line chemotherapeutic agent, but possesses limitations due to side effects, high dose, non-specific tissue distribution, and drug resistance. An epigenetic modulator, vorinostat (VOR) is known to enhance PTX efficacy and therefore to resolve the issues of conventional PTX formulations, we designed PTX- and VOR-bound albumin nanoparticles (PTX-VOR-BSA-NPs) using antisolvent precipitation technique where albumin is used as a carrier and a targeting agent. The PTX-VOR-BSA-NPs were of 140 nm size, polydispersity index around 0.18, and about 78% and 68% of entrapment efficiency for PTX and VOR, respectively. A bi-pattern release of both PTX and VOR was observed from PTX-VOR-BSA-NPs with a burst release for 2 h succeeded by sustained release until 24 h. A significantly lower %cell viability was observed in MCF-7 cell lines, while efficient cellular drug uptake was found in MDA-MB-231 cells. Furthermore, a greater apoptotic index was found compared to free PTX and VOR because of the synergistic activity of these drugs. The PTX-VOR-BSA-NPs also showcased superior pharmacokinetic profile and noteworthy reduction in the tumor volume compared to Intaxel in 4T1 cell line-induced breast tumor model. Further, the NPs showed similar levels of toxicity biomarkers as that of control. Overall, the developed PTX-VOR-BSA-NPs were found to have less toxicity and more effectiveness compared to the marketed formulation, thus affirming the generation of a potent as well as and safe product.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Paclitaxel/pharmacokinetics , Breast Neoplasms/drug therapy , Vorinostat , Albumins , MCF-7 Cells , Cell Line, Tumor
11.
Int J Pharm ; 648: 123570, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37918494

ABSTRACT

Triple negative breast cancer (TNBC) cells resist chemotherapy by hijacking apoptosis. Alternative cell death forms like ferroptosis offer new treatment options. A combined therapy using neratinib (NTB; ferroptosis inducer) and silibinin (SLB; apoptosis inducer) via albumin-based nanocarriers (N-S Alb NPs) was explored to target TNBC. N-S Alb NPs had optimal size (134.26 ± 10.23 nm), PDI (0.224 ± 0.01), and % entrapment efficiency (∼80 % for NTB and ∼87 % for SLB). Transmission electron microscopy confirmed their spherical shape. In vitro release studies showed sustained drug release without hemolysis risk. N-S Alb NPs had higher cellular uptake and cytotoxicity than individual drugs or their mixture. IC50 values for N-S Alb NPs were significantly reduced in MDA-MB-231 (∼2.23-fold) and 4T1 (∼1.85-fold) cell lines and apoptosis index were significantly higher in MDA-MB-231 (∼1.31-fold) and 4T1 cell line (∼1.35-fold) than the physical mixture of both drugs (NTB + SLB). N-S Alb NPs generated more reactive oxygen species (ROS) and caused mitochondrial membrane depolarization, indicating increased cell death. They also exhibited better ferroptosis induction by reducing glutathione (GSH), increasing Fe2+ activity and MDA levels in TNBC cells. Thus, N-S Alb NPs had the ability to promote "mixed" type cell death, showed promise in enhancing the payload capabilities and targeting in TNBC.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Silybin , Triple Negative Breast Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis , Albumins
12.
Int J Biol Macromol ; 253(Pt 8): 127254, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37813219

ABSTRACT

Ferroptosis is a non-apoptotic cell death pathway characterized by the accumulation of lipid-peroxy radicals within the affected cells. Here, we investigate the synergistic capacity of sorafenib (SOR) and simvastatin (SIM) to trigger ferroptosis for cancer therapy. For precise in-vivo delivery, SOR + SIM was ratiometrically loaded in bovine serum albumin nanoparticles (BSA-NPs) modified with 4-carboxy phenylboronic acid (CPBA). The developed CPBA-BSA(SOR + SIM)-NPs revealed size of 175.2 ± 12.8 nm, with PDI of 0.22 ± 0.03 and Z-potential of -29.6 ± 4.8 mV. Significantly, CPBA-BSA(SOR + SIM)-NPs exhibited > 2 and > 5-fold reduction in IC50 values compared to individual SOR and SIM treatments respectively, in all tested cell lines. Moreover, CPBA-BSA(SOR + SIM)-NPs treated cells exhibited decrease in glutathione levels, increase in malonaldehyde levels and depolarization of mitochondrial membrane potential (JC-1 assay). Pharmacokinetic analysis revealed enhanced AUC0-∞ and MRT levels for SOR and SIM when administered as CPBA-BSA(SOR + SIM)-NPs compared to free drugs. Crucially, in in-vivo experiments, CPBA-BSA(SOR + SIM)-NPs led to a significant reduction in tumor volume compared to various control groups. Histological and biomarker analyses underscore their biocompatibility for clinical applications. In conclusion, this study highlights the potential of CPBA-BSA(SOR + SIM)-NPs as a promising strategy for inducing ferroptosis in cancer cells, concurrently improving drug delivery and therapeutic efficacy. This approach opens new avenues in cancer treatment.


Subject(s)
Ferroptosis , Nanoparticles , Sorafenib/pharmacology , Serum Albumin, Bovine , Simvastatin/pharmacology , Drug Carriers/pharmacokinetics , Particle Size
13.
AAPS PharmSciTech ; 24(7): 180, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697085

ABSTRACT

Ferroptosis, a pathway dependent on oxygen and iron catalysts, holds promise as a therapeutic approach for cancer treatment due to its manageable regulation, direct control, and immunogenic properties. The sensitivity of cancer cells to ferroptosis induction varies based on their metabolic, genetic, and signalling pathways, prompting the use of combination therapy. In this study, we conducted a screening of drug combinations, including sorafenib (SOR) with simvastatin (SIM), phenethyl isothiocyanate, and trigonelline, in MDA-MB-231, A549, and HeLa cells to assess their cytotoxicity. The SOR-SIM combination exhibited a synergistic effect in MDA-MB-231, A549, and HeLa cells, with calculated CI values of ~ 0.66, 0.53, and 0.59, respectively. Furthermore, co-treatment with ferrostatin-1 resulted in a concentration-dependent increase in the IC50 values. Additionally, SOR + SIM demonstrated a significant reduction in GSH levels, an increase in MDA levels, and mitochondrial membrane depolarization across all three cell lines, indicating their ferroptosis inducing potential. In-vivo studies showed a significant reduction in tumor volume by 3.53-, 2.55-, and 1.47-fold compared to control, SIM, and SOR, respectively. Toxicity assessments revealed insignificant changes in biomarker levels and no observable deformations in isolated organs, except for erythrocyte shrinkage and membrane scrambling effects caused by the SOR + SIM combination. Overall, our findings highlight the potential of the SOR + SIM combination as an effective strategy for cancer treatment, emphasizing the importance of further research in targeted drug delivery systems to ensure its safety.


Subject(s)
Ferroptosis , Neoplasms , Humans , Early Detection of Cancer , HeLa Cells , Sorafenib/pharmacology , Drug Delivery Systems , Neoplasms/drug therapy
14.
Bioconjug Chem ; 34(9): 1528-1552, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37603704

ABSTRACT

Most cancer patients rarely benefit from monodrug therapy because of both cancer complexity and tumor environment. One of the main reasons for this failure is insufficient accumulation of the optimal dose at the tumorous site. Our investigation implies a promising strategy to engineer prodrug nanoparticles (NPs) of bortezomib (BTZ) and selenium (Se) using sialic acid (SAL) as a ligand to improve breast cancer therapy. BTZ was conjugated with SAL and HPMA (N-2-hydroxypropyl methacrylamide) to prepare a prodrug conjugate; BTZ-SAL-HPMA (BSAL-HP) and then fabricated into prodrug NPs with Se (Se_BSAL-HP prodrug NPs). The self-assembly of prodrug NPs functionalized with Se showed size (204.13 ± 0.02 nm) and zeta potential (-31.0 ± 0.11 mV) in dynamic light scattering (DLS) experiments and spherical shape in TEM and SEM analysis. Good stability and low pH drug release profile were characterized by Se_BSAL-HP prodrug NPs. The tumor-selective boronate-ester-based prodrug NPs of BTZ in combination with Se endowed a synergistic effect against cancer cells. Compared to prodrug conjugate, Se_BSAL-HP prodrug NPs exhibited higher cell cytotoxicity and enhanced cellular internalization with significant changes in mitochondria membrane potential (MMP). Elevated apoptosis was observed in the (G2/M) phase of the cell cycle for Se_BSAL-HP prodrug NPs (2.7-fold) higher than BTZ. In vivo studies were performed on Sprague-Dawley rats and resulted in positive trends. The increased therapeutic activity of Se_BSAL-HP prodrug NPs inhibited primary tumor growth and showed 43.05 fold decrease in tumor volume than the control in 4T1 tumor bearing mice. The surprising and remarkable outcomes for Se_BSAL-HP prodrug NPs were probably due to the ROS triggering effect of boronate ester and selenium given together.


Subject(s)
Neoplasms , Prodrugs , Selenium , Rats , Animals , Mice , Rats, Sprague-Dawley , Prodrugs/therapeutic use , N-Acetylneuraminic Acid , Bortezomib/pharmacology , Bortezomib/therapeutic use , Esters
15.
J Liposome Res ; : 1-25, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37594466

ABSTRACT

The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the in vitro drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the in vitro cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The in vivo tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the in vivo studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.

16.
Int J Biol Macromol ; 252: 126565, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37640185

ABSTRACT

This study investigates the impact of charge and chain length of bile salts in the bilosomes on the oral bioavailability of insulin (IN) by examining their uptake via the apical sodium-dependent bile acid transporter (ASBT). Deoxycholic acid bile salt was conjugated with different amino acids to create conjugates with varying charge and chain length, which were then embedded in liposomes. The resulting bilosomes had a particle size <400 nm, a PDI of 0.121 ± 0.03, and an entrapment efficiency of ∼70 %, while maintaining the chemical and conformational integrity of the loaded IN. Bilosomes also provided superior protection in biological fluids without compromising their biophysical attributes. Quantitative studies using the Caco-2 cell line demonstrated that anionic bilosomes were taken up more efficiently through ASBT than cationic bilosomes with 4- and 1.3-fold increase, respectively. Ex-vivo permeability studies corroborated these findings. In-vivo efficacy studies revealed a 1.6-fold increase in the AUC of IN with bilosomes compared to subcutaneous IN. The developed bilosomes were able to reduce blood glucose levels by ∼65 % at 6 h, with a cumulative hypoglycemic value of 35 % and a BAR of ∼30 %. These results suggest that ASBT can be a suitable target for improving the oral bioavailability of bilosomes containing IN.


Subject(s)
Insulin , Liposomes , Humans , Biological Availability , Caco-2 Cells , Liposomes/chemistry , Bile Acids and Salts
17.
Adv Drug Deliv Rev ; 199: 114901, 2023 08.
Article in English | MEDLINE | ID: mdl-37257756

ABSTRACT

Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc. This review summarizes recent advancements in lipid-based LAIs for delivering small and macromolecules, and their potential in managing chronic diseases. It also provides an overview of the lipid depots available in market or clinical phase, as well as patents for lipid-based LAIs. Furthermore, this review critically discusses the current scenario of using in vitro release methods to establish IVIVC and highlights the challenges involved in developing lipid-based LAIs.


Subject(s)
Nanostructures , Phospholipids , Humans , Delayed-Action Preparations
18.
Int J Pharm ; 637: 122868, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36958606

ABSTRACT

Follicle stimulating hormone (FSH) is widely used for the treatment of female infertility, where the level of FSH is suboptimal due to which arrest in follicular development and anovulation takes place. Currently, only parenteral formulations are available for FSH in the market. Due to the drawbacks of parenteral administration and the high market shares of FSH, there is a need for easily accessible oral formulation. Therefore, enteric coated capsules filled with FSH loaded nanostructured lipid carriers (NLCs) or liposomes were prepared. Preliminary studies such as circular dichroism, SDS-PAGE, FTIR and ELISA were conducted to analyze FSH. Prepared formulations were optimized with respect to the size, polydispersity index, zeta potential, and entrapment efficiency using the design of experiments. Optimized formulations were subjected to particle counts and distribution analysis, TEM analysis, in vitro drug release, dissolution of enteric coated capsules, cell line studies, everted sac rat's intestinal uptake study, pharmacokinetics, pharmacodynamics, and stability studies. In the case of liposomes, RGD conjugation was done by carbodiimide chemistry and conjugation was confirmed by FTIR, 1HNMR and Raman spectroscopy. The prepared formulations were discrete and spherical. The release of FSH from enteric coated capsules was slow and sustained. The increased permeability of nano-formulations was observed in Caco-2 monoculture as well as in Caco-2 and Raji-B co-culture models. NLCs and liposomes showed an improvement in oral bioavailability and efficacy of FSH in rats. This may be due to mainly chylomicron-assisted lymphatic uptake of NLCs; whereas, in the case of liposomes, RGD-based targeting of ß1 integrins of M cells on Peyer's patches may be the main reason for the better effect by FSH. FSH was found to be stable chemically and conformationally. Overall, the study reveals the successful development and evaluation of FSH loaded NLCs and liposomes.


Subject(s)
Drug Carriers , Nanostructures , Humans , Rats , Female , Animals , Drug Carriers/chemistry , Liposomes , Follicle Stimulating Hormone , Caco-2 Cells , Nanostructures/chemistry , Administration, Oral , Capsules , Oligopeptides , Particle Size
19.
Drug Deliv Transl Res ; 13(4): 1074-1087, 2023 04.
Article in English | MEDLINE | ID: mdl-36528709

ABSTRACT

In present investigation, we developed paclitaxel (PTX)-loaded adenosine (ADN)-conjugated PLGA nanoparticles for combating triple-negative breast cancer (TNBC), where ADN acts as a substrate for adenosine receptors (AR) that are overexpressed in TNBC. Using synthesized PLGA-PEG-ADN, PTX-loaded nanoparticles (PTX ADN-PEG-PLGA NPs) were prepared via emulsion diffusion evaporation process that rendered particles of size 135 ± 12 nm, PDI of 0.119 ± 0.03, and entrapment-efficiency of 79.26 ± 2.52%. The NPs showed higher %cumulative release at pH 5.5 over 7.4 with Higuchi release kinetics. The PTX ADN-PEG-PLGA NPs showed ~ 4.87- and 5.22-fold decrease in %hemolysis in comparison to free PTX and Intaxel®, indicating their hemocompatible nature. The ADN modification assisted cytoplasmic internalization of particles via AR-mediated endocytosis that resulted in ~ 3.77- and 3.51-fold reduction in IC50 and showed apoptosis index of 0.93 and 1.18 in MDA-MB-231 and 4T1 cells respectively. The pharmacokinetic profile of ADN-PEG-PLGA NPs revealed higher AUC and t1/2 than Intaxel® and Nanoxel® pharmacodynamic activity showed ~ 18.90-fold lower %tumor burden than control. The kidney and liver function biomarkers showed insignificant change in the levels, when treated with PTX ADN-PEG-PLGA NPs and exhibited no histological alterations in the liver, spleen, and kidney. Overall, the optimized particles were found to be biocompatible with improved anti-TNBC activity.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Paclitaxel/pharmacokinetics , Triple Negative Breast Neoplasms/drug therapy , Adenosine , Polylactic Acid-Polyglycolic Acid Copolymer , Cell Line, Tumor , Polyethylene Glycols , Drug Carriers/pharmacology
20.
Drug Deliv Transl Res ; 13(3): 839-851, 2023 03.
Article in English | MEDLINE | ID: mdl-36223029

ABSTRACT

Sildenafil (SLD) is employed for the management of erectile dysfunction and pulmonary arterial hypertension. It exhibits meagre water solubility and is available in the form of citrate salt hydrate to improve the solubility. However, it still exhibits moderate solubility, high first-pass metabolism, resulting in very less oral bioavailability. The present study demonstrates the preparation of self-nanoemulsifying drug delivery system for augmenting the oral bioavailability of SLD. Oleic acid and Capmul MCM C8 blend (oil phase), Cremophor® RH40 (surfactant), and Labrafil® M1944 CS (cosurfactant) were selected as main constituents for making liquid preconcentrate based on the solubility and emulsification study. The preconcentrate upon dilution and emulsification showed droplet size 52.03 ± 13.03 nm, PDI 0.143 ± 0.028, and % transmittance was 99.77 ± 1.86% with SLD load of 40 mg/g of formulation. The prepared formulation was further assessed for stability, in vitro release, Caco-2 cell uptake, and in vivo pharmacokinetic performance. SLD-SNEDDS formulation was found to be robust in terms of stability against several folds dilution in the gastrointestinal tract (GIT), freeze-thaw cycles, and had a storage stability of 3 months at 4 °C and 25 °C. SLD-SNEDDS showed ~4.7-fold and ~5-fold increase in time- and concentration-dependent cellular uptake as against SLD cultured with Caco-2 cells. In vivo pharmacokinetic study revealed ~5.8- and ~2.5-fold increase in AUC0-∞ values in case of SLD-SNEDDS as against SLD suspension and SLD citrate solution, respectively.


Subject(s)
Drug Delivery Systems , Nanoparticles , Rats , Male , Humans , Animals , Sildenafil Citrate , Rats, Wistar , Caco-2 Cells , Emulsions , Drug Delivery Systems/methods , Surface-Active Agents , Solubility , Biological Availability , Citrates , Administration, Oral , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL