Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 13(1): 2320411, 2024.
Article in English | MEDLINE | ID: mdl-38504847

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is refractory to immune checkpoint inhibitor therapy. However, intratumoral T-cell infiltration correlates with improved overall survival (OS). Herein, we characterized the diversity and antigen specificity of the PDAC T-cell receptor (TCR) repertoire to identify novel immune-relevant biomarkers. Demographic, clinical, and TCR-beta sequencing data were collated from 353 patients across three cohorts that underwent surgical resection for PDAC. TCR diversity was calculated using Shannon Wiener index, Inverse Simpson index, and "True entropy." Patients were clustered by shared repertoire specificity. TCRs predictive of OS were identified and their associated transcriptional states were characterized by single-cell RNAseq. In multivariate Cox regression models controlling for relevant covariates, high intratumoral TCR diversity predicted OS across multiple cohorts. Conversely, in peripheral blood, high abundance of T-cells, but not high diversity, predicted OS. Clustering patients based on TCR specificity revealed a subset of TCRs that predicts OS. Interestingly, these TCR sequences were more likely to encode CD8+ effector memory and CD4+ T-regulatory (Tregs) T-cells, all with the capacity to recognize beta islet-derived autoantigens. As opposed to T-cell abundance, intratumoral TCR diversity was predictive of OS in multiple PDAC cohorts, and a subset of TCRs enriched in high-diversity patients independently correlated with OS. These findings emphasize the importance of evaluating peripheral and intratumoral TCR repertoires as distinct and relevant biomarkers in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Biomarkers
2.
Cancer Immunol Res ; 11(8): 1055-1067, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37229629

ABSTRACT

Intratumoral T-cell dysfunction is a hallmark of pancreatic tumors, and efforts to improve dendritic cell (DC)-mediated T-cell activation may be critical in treating these immune therapy unresponsive tumors. Recent evidence indicates that mechanisms that induce dysfunction of type 1 conventional DCs (cDC1) in pancreatic adenocarcinomas (PDAC) are drivers of the lack of responsiveness to checkpoint immunotherapy. However, the impact of PDAC on systemic type 2 cDC2 development and function has not been well studied. Herein, we report the analysis of 3 cohorts, totaling 106 samples, of human blood and bone marrow (BM) from patients with PDAC for changes in cDCs. We found that circulating cDC2s and their progenitors were significantly decreased in the blood of patients with PDAC, and repressed numbers of cDC2s were associated with poor prognosis. Serum cytokine analyses identified IL6 as significantly elevated in patients with PDAC and negatively correlated with cDC numbers. In vitro, IL6 impaired the differentiation of cDC1s and cDC2s from BM progenitors. Single-cell RNA sequencing analysis of human cDC progenitors in the BM and blood of patients with PDAC showed an upregulation of the IL6/STAT3 pathway and a corresponding impairment of antigen processing and presentation. These results suggested that cDC2s were systemically suppressed by inflammatory cytokines, which was linked to impaired antitumor immunity.


Subject(s)
Interleukin-6 , Pancreatic Neoplasms , Humans , Interleukin-6/metabolism , Pancreatic Neoplasms/pathology , Dendritic Cells , Cytokines/metabolism
3.
Cancer Immunol Immunother ; 72(8): 2813-2827, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37179276

ABSTRACT

Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Antigens, Neoplasm , Pancreatic Neoplasms/therapy , CD8-Positive T-Lymphocytes , Carcinoma, Pancreatic Ductal/therapy , Immunotherapy , Pancreatic Neoplasms
4.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36951731

ABSTRACT

Tumor-associated macrophages (TAMs) are abundant in pancreatic ductal adenocarcinomas (PDACs). While TAMs are known to proliferate in cancer tissues, the impact of this on macrophage phenotype and disease progression is poorly understood. We showed that in PDAC, proliferation of TAMs could be driven by colony stimulating factor-1 (CSF1) produced by cancer-associated fibroblasts. CSF1 induced high levels of p21 in macrophages, which regulated both TAM proliferation and phenotype. TAMs in human and mouse PDACs with high levels of p21 had more inflammatory and immunosuppressive phenotypes. p21 expression in TAMs was induced by both stromal interaction and/or chemotherapy treatment. Finally, by modeling p21 expression levels in TAMs, we found that p21-driven macrophage immunosuppression in vivo drove tumor progression. Serendipitously, the same p21-driven pathways that drive tumor progression also drove response to CD40 agonist. These data suggest that stromal or therapy-induced regulation of cell cycle machinery can regulate both macrophage-mediated immune suppression and susceptibility to innate immunotherapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Humans , Pancreatic Neoplasms/metabolism , Macrophages/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Immunotherapy , Cell Proliferation , Tumor Microenvironment , Cell Line, Tumor
5.
Clin Cancer Res ; 27(24): 6761-6771, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34593529

ABSTRACT

PURPOSE: FOLFIRINOX has demonstrated promising results for patients with pancreatic ductal adenocarcinoma (PDAC). Chemotherapy-induced immunogenic cell death can prime antitumor immune responses. We therefore performed high-dimensional profiling of immune cell subsets in peripheral blood to evaluate the impact of FOLFIRINOX on the immune system. EXPERIMENTAL DESIGN: Peripheral blood mononuclear cells (PBMC) were obtained from treatment-naïve (n = 20) and FOLFIRINOX-treated patients (n = 19) with primary PDAC tumors at the time of resection. PBMCs were characterized by 36 markers using mass cytometry by time of flight (CyTOF). RESULTS: Compared with treatment-naïve patients, FOLFIRINOX-treated patients showed distinct immune profiles, including significantly decreased inflammatory monocytes and regulatory T cells (Treg), increased Th1 cells, and decreased Th2 cells. Notably, both monocytes and Treg expressed high levels of immune suppression-associated CD39, and the total CD39+ cell population was significantly lower in FOLFIRINOX-treated patients compared with untreated patients. Cellular alterations observed in responders to FOLFIRINOX included a significantly decreased frequency of Treg, an increased frequency of total CD8 T cells, and an increased frequency of CD27-Tbet+ effector/effector memory subsets of CD4 and CD8 T cells. CONCLUSIONS: Our study reveals that neoadjuvant chemotherapy with FOLFIRINOX enhances effector T cells and downregulates suppressor cells. These data indicate that FOLFIRINOX neoadjuvant therapy may improve immune therapy and clinical outcome in patients with PDAC.


Subject(s)
Neoadjuvant Therapy , Pancreatic Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD8-Positive T-Lymphocytes , Fluorouracil/therapeutic use , Humans , Irinotecan , Leucovorin/therapeutic use , Leukocytes, Mononuclear , Oxaliplatin , Pancreatic Neoplasms/drug therapy
6.
Cancer Res Commun ; 1(2): 115-126, 2021 11.
Article in English | MEDLINE | ID: mdl-35611186

ABSTRACT

Allogeneic cancer vaccines are designed to induce antitumor immune responses with the goal of impacting tumor growth. Typical allogeneic cancer vaccines are produced by expansion of established cancer cell lines, transfection with vectors encoding immunostimulatory cytokines, and lethal irradiation. More than 100 clinical trials have investigated the clinical benefit of allogeneic cancer vaccines in various cancer types. Results show limited therapeutic benefit in clinical trials and currently there are no FDA approved allogeneic cancer vaccines. We used recently developed bioinformatics tools including the pVAC-seq suite of software tools to analyze DNA/RNA sequencing data from the TCGA to examine the repertoire of antigens presented by a typical allogeneic cancer vaccine, and to simulate allogeneic cancer vaccine clinical trials. Specifically, for each simulated clinical trial we modeled the repertoire of antigens presented by allogeneic cancer vaccines consisting of three hypothetical cancer cell lines to 30 patients with the same cancer type. Simulations were repeated ten times for each cancer type. Each tumor sample in the vaccine and the vaccine recipient was subjected to HLA typing, differential expression analyses for tumor associated antigens (TAAs), germline variant calling, and neoantigen prediction. These analyses provided a robust, quantitative comparison between potentially beneficial TAAs and neoantigens versus distracting antigens present in the allogeneic cancer vaccines. We observe that distracting antigens greatly outnumber shared TAAs and neoantigens, providing one potential explanation for the lack of observed responses to allogeneic cancer vaccines. This analysis provides additional rationale for the redirection of efforts towards a personalized cancer vaccine approach.


Subject(s)
Cancer Vaccines , Hematopoietic Stem Cell Transplantation , Neoplasms , Humans , Epitopes , Neoplasms/therapy , Antigens, Neoplasm/genetics
7.
Mo Med ; 117(6): 559-562, 2020.
Article in English | MEDLINE | ID: mdl-33311789

ABSTRACT

Thunderbeat™ is a device that uses both ultrasonic and advanced bipolar energies to achieve hemostasis. It has been evaluated in a variety of clinical contexts, but no literature exists regarding its application to pancreatic surgery. Using a prospective, randomized controlled trial, we evaluated its safety and efficacy in the Whipple procedure. Thirty-two participants were enrolled in the study. The Thunderbeat™ device during the Whipple procedure showed similar safety profile compared to standard of care.


Subject(s)
Pancreaticoduodenectomy , Ultrasonics , Humans , Pancreaticoduodenectomy/instrumentation , Prospective Studies , Surgical Instruments
SELECTION OF CITATIONS
SEARCH DETAIL
...