Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Food Chem ; 423: 136273, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37209545

ABSTRACT

Carrots produced in different agricultural regions with organic or conventional mode were analyzed by untargeted UHPLC-HRMS using reversed-phase and HILIC modes. Data were first treated separately, and further combined to possibly improve results. An in-house data processing workflow was applied to identify relevant features after peak detection. Based on these features, discrimination models were built using chemometrics. A tentative annotation of chemical markers was performed using online databases and UHPLC-HRMS/MS analyses. An independent set of samples was analyzed to assess the discrimination potential of these markers. Carrots produced in the New Aquitaine region could be successfully discriminated from carrots originating from the Normandy region by an OLPS-DA model. Arginine and 6-methoxymellein could be identified as potential markers with the C18-silica column. Additional markers (N-acetylputrescine, l-carnitine) could be identified thanks to the polar column. Discrimination based on production mode was more challenging: some trend was observed but model metrics remained unsatisfactory.


Subject(s)
Daucus carota , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Metabolomics/methods
2.
Food Chem ; 329: 127129, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32497844

ABSTRACT

The acknowledged marker of Robusta coffee, 16-O-methylcafestol (16-OMC), can be quantified by NMR as a mixture with 16-O-methylkahweol (16-OMK), which accounts for approximately 10% of the mixture. In the present study, we detected and quantified 16-O-methylated diterpenes (16-OMD) in 248 samples of green Coffea arabica beans by NMR. We did not observe any differences between genotypes introgressed by chromosomal fragments of Robusta and non-introgressed genotypes. Environmental effects suggesting a possible protective role of 16-OMD for adaptation, as well as genotypic effects that support a high heritability of this trait were observed. Altogether, our data confirmed the presence of 16-OMD in green Arabica at a level approximately 1.5% that of a typical Robusta, endorsing the validity of 16-OMD as a marker for the presence of Robusta.


Subject(s)
Coffea/genetics , Diterpenes/chemistry , Coffea/chemistry , Coffee/chemistry , Coffee/genetics , Color , Genotype , Magnetic Resonance Spectroscopy , Methylation , Molecular Structure , Seeds/chemistry , Seeds/genetics
3.
Food Chem ; 217: 766-772, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664696

ABSTRACT

Manuka honey is a product produced essentially in New Zealand, and has been widely recognised for its antibacterial properties and specific taste. In this study, 264 honeys from New Zealand and Australia were analysed using proton NMR spectroscopy coupled with chemometrics. Known manuka markers, methylglyoxal and dihydroxyacetone, have been characterised and quantified, together with a new NMR marker, identified as being leptosperin. Manuka honey profiling using 1H NMR is shown to be a possible alternative to chromatography with the added advantage that it can measure methylglyoxal (MGO), dihydroxyacetone (DHA) and leptosperin simultaneously. By combining the information from these three markers, we established a model to estimate the proportion of manuka in a given honey. Markers of other botanical origins were also identified, which makes 1H NMR a convenient and efficient tool, complementary to pollen analysis, to control the botanical origin of Oceania honeys.


Subject(s)
Flowers/chemistry , Honey/analysis , Proton Magnetic Resonance Spectroscopy/methods , Australia , Dihydroxyacetone/chemistry , Discriminant Analysis , Flowers/classification , Models, Theoretical , New Zealand , Oceania , Pyruvaldehyde/chemistry
4.
Anal Bioanal Chem ; 408(16): 4389-401, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27086012

ABSTRACT

A data fusion approach was applied to a commercial honey data set analysed by (1)H-nuclear magnetic resonance (NMR) 400 MHz and liquid chromatography-high resolution mass spectrometry (LC-HRMS). The latter was performed using two types of mass spectrometers: an Orbitrap-MS and a time of flight (TOF)-MS. Fifty-six honey samples from four monofloral origins (acacia, orange blossom, lavender and eucalyptus) and multifloral sources from various geographical origins were analysed using the three instruments. The discriminating power of the results was examined by PCA first considering each technique separately, and then combining NMR and LC-HRMS together with or without variable selection. It was shown that the discriminating potential is increased through the data fusion, allowing for a better separation of eucalyptus, orange blossom and lavender. The NMR-Orbitrap-MS and NMR-TOF-MS mid-level fusion models with variable selection were preferred as a good discrimination was obtained with no misclassification observed for the latter. This study opens the path to new comprehensive food profiling approaches combining more than one technique in order to benefit from the advantages of several technologies. Graphical Abstract Data fusion between high resolution 1H-NMR and mass spectrometry.


Subject(s)
Flowers/chemistry , Honey/analysis , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Discriminant Analysis , Plants/chemistry
5.
Food Chem ; 189: 60-6, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26190601

ABSTRACT

An innovative analytical approach was developed to tackle the most common adulterations and quality deviations in honey. Using proton-NMR profiling coupled to suitable quantification procedures and statistical models, analytical criteria were defined to check the authenticity of both mono- and multi-floral honey. The reference data set used was a worldwide collection of more than 800 honeys, covering most of the economically significant botanical and geographical origins. Typical plant nectar markers can be used to check monofloral honey labeling. Spectral patterns and natural variability were established for multifloral honeys, and marker signals for sugar syrups were identified by statistical comparison with a commercial dataset of ca. 200 honeys. Although the results are qualitative, spiking experiments have confirmed the ability of the method to detect sugar addition down to 10% levels in favorable cases. Within the same NMR experiments, quantification of glucose, fructose, sucrose and 5-HMF (regulated parameters) was performed. Finally markers showing the onset of fermentation are described.


Subject(s)
Honey/analysis , Proton Magnetic Resonance Spectroscopy , Food Analysis , Fructose/analysis , Glucose/analysis , Multivariate Analysis , Plant Nectar/chemistry , Quality Control , Reproducibility of Results , Sucrose/analysis
6.
Eur J Pharm Sci ; 48(3): 464-73, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23262056

ABSTRACT

In the frame of increasingly stringent quality assessment required by the regulators, the pharmaceutical industry has to face increasingly sophisticated counterfeiting practices. Counterfeits based on deliberate copying of processes or on the infringement of current patents for generic medicines are not straightforward to detect, unless the molecular probe is the active molecule itself. In this context, impurity profiling is limited. A tool based on the determination of intramolecular isotopic profiles has been developed to provide manufacturers of APIs (Active Pharmaceutical Ingredients) with a new solution to meet this double requirement. Stable isotope analyses by NMR gives direct access to site-specific isotope content at natural abundance. In this report, it is shown how both ²H and ¹³C NMR spectrometry can provide complementary and valuable information that could be applied to link APIs to their manufacturing source. Isotopic ¹³C NMR offers additional benefits over ²H NMR in using robust adiabatic polarization transfer methods, leading to a tremendous reduction in experimental time. Two approaches are illustrated. Firstly, the use of ²H and single pulse ¹³C NMR spectra obtained on 20 commercial ibuprofen samples from different origins show that this combined strategy leads to (i) a unique intramolecular isotope identification and (ii) a preliminary classification of the samples according to the synthetic pathways of the main industrial processes. An approach employing polarization transfer methods applied to 11 commercial naproxen samples, for which ²H and single pulse ¹³C NMR spectra are not exploitable and/or are not accessible in reasonable time. The relative and partial intramolecular ¹³C distribution obtained on naproxen by applying this methodology is sufficiently informative to allow the same conclusions as for ibuprofen. The additional benefits that these approaches should bring to API manufacturers are discussed.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Counterfeit Drugs/chemistry , Fraud/prevention & control , Ibuprofen/chemistry , Naproxen/chemistry , Technology, Pharmaceutical , Anti-Inflammatory Agents, Non-Steroidal/economics , Carbon Isotopes , Chemistry, Pharmaceutical , Deuterium , Ibuprofen/economics , Magnetic Resonance Spectroscopy , Naproxen/economics , Principal Component Analysis , Quality Control
7.
Rapid Commun Mass Spectrom ; 25(17): 2533-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21818814

ABSTRACT

Continuous-flow isotope ratio mass spectrometry (CF-IRMS) of deuterium, carbon, nitrogen, oxygen and sulfur has been used to analyse samples of pure chondroitin sulfates from known animal sources (shark, squid, salmon, pig and bovine). There is a need to control the origin of this dietary supplement, which is extracted from several types of animals: for traditional, ethical, or economic reasons, a given source of natural products of animal origin can be preferred to another, and can therefore have a different price. Twenty-three samples collected in Europe and Asia were analysed by IRMS. The results, especially the isotopic deviations of sulphur, oxygen and deuterium, show a significant discrimination between marine and terrestrial origins of this compound which will provide a convenient and efficient way to control the declared sources in the market. The differences observed between origins are further discussed.


Subject(s)
Chondroitin Sulfates/metabolism , Dietary Supplements/analysis , Oxygen Isotopes/analysis , Sulfur Isotopes/analysis , Analysis of Variance , Animals , Cattle , Chondroitin Sulfates/chemistry , Decapodiformes , Deuterium/analysis , Mass Spectrometry , Principal Component Analysis , Salmon , Sharks , Swine
8.
Talanta ; 85(4): 1909-14, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21872037

ABSTRACT

The robustness of adiabatic polarization transfer methods has been evaluated for determining the carbon isotopic finger-printing of active pharmaceutical ingredients. The short time stabilities of the adiabatic DEPT and INEPT sequences are very close to that observed with the one pulse sequence, but the DEPT long time stability is not sufficient for isotopic measurements at natural abundance or low enrichment. Using the INEPT sequence for (13)C isotopic measurements induces a dramatic reduction in the experimental time without deterioration in short time or long time stability. It appears, therefore, to be a method of choice for obtaining the isotopic finger-print of different ibuprofen samples in a minimum time. The results obtained on 13 commercial ibuprofen samples from different origins show that this strategy can be used effectively to determine (13)C distribution within a given molecule and to compare accurately differences in the isotopic distribution between different samples of the given molecule. The present methodology is proposed as a suitable tool to fight against counterfeiting.


Subject(s)
Counterfeit Drugs/analysis , Ibuprofen/chemistry , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes/chemistry , Drug Labeling , Drug Stability , Time Factors
9.
J Agric Food Chem ; 58(22): 11580-5, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21028824

ABSTRACT

Until now, no analytical method, not even isotopic ones, had been able to differentiate between sugars coming from C4-metabolism plants (cane, maize, etc.) and some crassulacean acid metabolism plants (e.g., pineapple, agave) because in both cases the isotope distributions of the overall carbon-13/carbon-12 and site-specific deuterium/hydrogen isotope ratios are very similar. Following recent advances in the field of quantitative isotopic carbon-13 NMR measurements, a procedure for the analysis of the positional carbon-13/carbon-12 isotope ratios of ethanol derived from the sugars of pineapples and agave using the site-specific natural isotopic fractionation-nuclear magnetic resonance (SNIF-NMR) method is presented. It is shown that reproducible results can be obtained when appropriate analytical conditions are used. When applied to pineapple juice, this new method demonstrates a unique ability to detect cane and maize sugar, which are major potential adulterants, with a detection limit in the order of 15% of the total sugars, which provides an efficient mean of controlling the authenticity of juices made from this specific fruit. When applied to tequila products, this new method demonstrates a unique ability to unambiguously differentiate authentic 100% agave tequila, as well as misto tequila (made from at least 51% agave), from products made from a larger proportion of cane or maize sugar and therefore not complying with the legal definition of tequila.


Subject(s)
Beverages/analysis , Carbohydrates/analysis , Carbon Isotopes/analysis , Ethanol/analysis , Magnetic Resonance Spectroscopy/methods , Plants/chemistry , Carbohydrate Metabolism , Magnetic Resonance Spectroscopy/instrumentation , Plants/metabolism
10.
Anal Chim Acta ; 649(1): 98-105, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19664468

ABSTRACT

An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations. The precision parameters of the method for measuring delta13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 per thousand, and the average reproducibility (R) was 0.91 per thousand. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (delta13C and delta18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring delta18O were found to be similar to the values previously obtained for other methods applied to wine and fruit juices: the average repeatability was 0.15 per thousand, and the average reproducibility was 0.59 per thousand. The above values are proposed as repeatability and reproducibility limits in the current state of the art. On the basis of this satisfactory inter-laboratory precision and on the accuracy demonstrated by a spiking experiment, the authors recommend the adoption of the three isotopic determinations included in this study as official methods for controlling the authenticity of vinegar.


Subject(s)
Acetic Acid/chemistry , Carbon Radioisotopes/analysis , Deuterium/analysis , Food Analysis , Magnetic Resonance Spectroscopy/methods , Oxygen Radioisotopes/analysis , Water/analysis , Algorithms
11.
J Agric Food Chem ; 56(3): 989-97, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-18179170

ABSTRACT

Variability within the stable isotope ratios in various lipidic fractions and the fatty acid composition of muscle oil has been analyzed for a large sample (171 fish) of wild and farmed Atlantic salmon ( Salmo salar) from 32 origins within Europe, North America, and Tasmania. Sampling was extended over all seasons in 2 consecutive years and included fish raised by different practices, in order to maximize the range of variation present. It is shown that two readily measured parameters, delta 15N measured on choline and delta18 O measured on total oil, can be successfully used to discriminate between fish of authentic wild and farmed origin. However, the certainty of identification of mislabeling in market-derived fish is strengthened by including the percentage of linoleic acid C18:2n-6 in the lipidic fraction. Thus, several apparent misidentifications were found. The combination of these three analytical parameters and the size of the database generated makes the method practical for implementation in official laboratories as a tool of labeling verification.


Subject(s)
Fatty Acids/analysis , Salmo salar/classification , Animals , Fish Oils/chemistry , Food Labeling , Lipids/analysis , Muscles/chemistry , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis
12.
Rapid Commun Mass Spectrom ; 21(10): 1555-60, 2007.
Article in English | MEDLINE | ID: mdl-17428013

ABSTRACT

Tetramethylurea (TMU) with a certified D/H ratio is the internal standard for Site-specific Natural Isotope Fractionation measured by Nuclear Magnetic Resonance (SNIF-NMR) analysis of wine ethanol for detection of possible adulterations (Commission Regulation 2676/90). A new batch of a TMU certified reference material (CRM) is currently being prepared. Whereas SNIF-NMR has been employed up to now, Elemental Analysis/Isotope Ratio Mass Spectrometry ((2)H-EA-IRMS) was envisaged as the method of choice for value assignment of the new CRM, as more precise (better repeatable) data might be obtained, resulting in lower uncertainty of the certified value. In order to evaluate the accuracy and intra- and inter-laboratory reproducibility of (2)H-EA-IRMS methods, a laboratory inter-comparison was carried out by analysing TMU and other organic compounds, as well as some waters. The results revealed that experienced laboratories are capable of generating robust and well comparable data, which highlights the emerging potential of IRMS in food authenticity testing. However, a systematic bias between IRMS and SNIF-NMR reference data was observed for TMU; this lack of data consistency rules out the (2)H-IRMS technique for the characterisation measurement of the new TMU CRM.


Subject(s)
Deuterium/analysis , Hydrogen/analysis , Methylurea Compounds/analysis , Calibration , Capsules , Ethanol , Magnetic Resonance Spectroscopy , Oxygen Isotopes , Oxygen Radioisotopes , Reproducibility of Results , Solvents , Water/analysis
13.
J AOAC Int ; 90(1): 187-95, 2007.
Article in English | MEDLINE | ID: mdl-17373451

ABSTRACT

The results of collaborative study are reported for a method that determines the site-specific isotope ratios of deuterium/hydrogen (D/H)i in vanillin by deuterium-nuclear magnetic resonance (2H-NMR) spectrometry. This method allows characterization of all the main commercial sources of commercial vanillin and detection of undeclared mixtures. It is based on the fact that the amounts of deuterium at various positions in the vanillin molecule are significantly different from one source to another. Vanillin is dissolved in acetonitrile and analyzed with a high-field NMR spectrometer fitted with a deuterium probe and a fluorine lock. The proportions of isotopomers monodeuterated at each hydrogen position of the molecule are recorded, and the corresponding (D/H) ratios are determined by using a calibrated reference. Nine laboratories analyzed 5 materials supplied as blind duplicates (1 natural vanillin from vanilla beans, 2 synthetic vanillins from guaiacol, 1 semisynthetic vanillin from lignin, and a mixture of natural and synthetic vanillins). The precision of the method for measuring site-specific ratios was as follows: for (D/H)1 the within-laboratory standard deviation (Sr) values ranged from 2.2 to 5.8 ppm, and the among-laboratories standard deviation (sR) values ranged from 3.6 to 5.1 ppm; for (D/H)3 the Sr values ranged from 1.7 to 3.2 ppm, and the SR values ranged from 2.4 to 3.7 ppm; for (D/H)4 the Sr values ranged from 2.3 to 6.2 ppm, and the SR values ranged from 2.4 to 6.4 ppm; for (D/H)5 the Sr values ranged from 0.8 to 2.7 ppm, and the SR values ranged from 0.9 to 2.3 ppm. It was shown that these values allow a satisfactory discrimination between vanillin sources. Therefore, the Study Director recommends the method for adoption as a First Action Official Method by AOAC INTERNATIONAL.


Subject(s)
Benzaldehydes/chemistry , Deuterium/analysis , Hydrogen/analysis , Benzaldehydes/isolation & purification , Guaiacol/analysis , Magnetic Resonance Spectroscopy/methods , Orchidaceae/chemistry , Reproducibility of Results , Sensitivity and Specificity
14.
J Agric Food Chem ; 54(2): 279-84, 2006 Jan 25.
Article in English | MEDLINE | ID: mdl-16417280

ABSTRACT

A laboratory procedure for the analysis of the oxygen-18/oxygen-16 isotope ratios of ethanol derived from sugars and fruit juices by pyrolysis-isotope ratio mass spectrometry (IRMS) has been applied to the study of isotopic fractionation induced by the isotope effects of fermentation and distillation. For both processes, an experimental model has been established to describe and explain the observed fractionation phenomena. It is shown that reproducible results can be obtained when appropriate analytical conditions are used. Moreover, the ability of ethanol to act as a reliable indicator of the (18)O/(16)O ratio of sugars in orange juice (and therefore to be used as an internal reference for detecting water addition) is demonstrated both in theory and in practice.


Subject(s)
Alcohols/metabolism , Ethanol/chemistry , Fermentation , Oxygen Isotopes/analysis , Oxygen/analysis , Beverages , Carbohydrate Metabolism , Chemical Fractionation , Citrus sinensis/chemistry , Fruit/chemistry , Mass Spectrometry
15.
J Agric Food Chem ; 53(13): 5130-3, 2005 Jun 29.
Article in English | MEDLINE | ID: mdl-15969486

ABSTRACT

A new method has been developed for measuring the D/H ratio of the nonexchangeable sites of citric acid by isotope ratio mass spectrometry (IRMS). Pure citric acid is transformed into its calcium salt and subsequently analyzed by pyrolysis-IRMS. The citric acid isolated from authentic fruit juices (citrus, pineapple, and red fruits) systematically shows higher D/H values than its nonfruit counterpart produced by fermentation of various sugar sources. The discrimination obtained with this simplified method is similar to that obtained previously by applying site specific isotopic fractionation-nuclear magnetic resonance (SNIF-NMR) to an ester derivative of citric acid. The combination of carbon 13 and deuterium measurements of extracted citric acid is proposed as a routine method for an optimum detection of exogenous citric acid in all kinds of fruit juices.


Subject(s)
Beverages/analysis , Citric Acid/analysis , Fruit/chemistry , Isotopes/analysis , Mass Spectrometry/methods , Carbon Isotopes/analysis , Deuterium/analysis , Food Contamination/analysis , Magnetic Resonance Spectroscopy , Reproducibility of Results
16.
J AOAC Int ; 87(3): 621-31, 2004.
Article in English | MEDLINE | ID: mdl-15287660

ABSTRACT

A collaborative study of the carbon-13 isotope ratio mass spectrometry (13C-IRMS) method based on fermentation ethanol for detecting some sugar additions in fruit juices and maple syrup is reported. This method is complementary to the site-specific natural isotope fractionation by nuclear magnetic resonance (SNIF-NMR) method for detecting added beet sugar in the same products (AOAC Official Methods 995.17 and 2000.19), and uses the same initial steps to recover pure ethanol. The fruit juices or maple syrups are completely fermented with yeast, and the alcohol is distilled with a quantitative yield (>96%). The carbon-13 deviation (delta13C) of ethanol is then determined by IRMS. This parameter becomes less negative when exogenous sugar derived from plants exhibiting a C4 metabolism (e.g., corn or cane) is added to a juice obtained from plants exhibiting a C3 metabolism (most common fruits except pineapple) or to maple syrup. Conversely, the delta13C of ethanol becomes more negative when exogenous sugar derived from C3 plants (e.g., beet, wheat, rice) is added to pineapple products. Twelve laboratories analyzed 2 materials (orange juice and pure cane sugar) in blind duplicate and 4 sugar-adulterated materials (orange juice, maple syrup, pineapple juice, and apple juice) as Youden pairs. The precision of that method for measuring delta13C was similar to that of other methods applied to wine ethanol or extracted sugars in juices. The within-laboratory (Sr) values ranged from 0.06 to 0.16%o (r = 0.17 to 0.46 percent per thousand), and the among-laboratories (SR) values ranged from 0.17 to 0.26 percent per thousand (R = 0.49 to 0.73 percent per thousand). The Study Directors recommend that the method be adopted as First Action by AOAC INTERNATIONAL.


Subject(s)
Acer/chemistry , Beverages/analysis , Carbohydrates/analysis , Ethanol/analysis , Fruit/chemistry , Algorithms , Carbon Isotopes/analysis , Carbon Radioisotopes/analysis , Fermentation , Indicators and Reagents , Mass Spectrometry , Quality Control , Reference Standards , Reproducibility of Results , Solutions
17.
J Agric Food Chem ; 51(18): 5202-6, 2003 Aug 27.
Article in English | MEDLINE | ID: mdl-12926859

ABSTRACT

A procedure for the analysis of the oxygen-18/oxygen-16 isotope ratio of ethanol derived from the sugars of orange juice using the preparation steps of the SNIF-NMR method followed by pyrolysis-isotope ratio mass spectrometry is presented. The isotopic fractionation induced by the isotope effects of fermentation and distillation have been investigated, and it is shown that reproducible results can be obtained when appropriate analytical conditions are used. It is also shown that the oxygen isotope distribution in the water and organic matter pools of fruits remains quite stable during the harvest period and is not altered by the precipitation rate within the last few days before the fruits are picked. Due to the robustness of the method and the fact that most of the oxygen-18 enrichment from the initial sugars is still present in the end-product, ethanol appears as a convenient internal reference to circumvent the spatial and temporal variability observed for the oxygen-18/oxygen-16 isotope ratio of water. A very strong correlation is observed between the isotopic deviations of ethanol and water, which is altered in the event of a water addition, even at a low level. Combining the information brought by these two parameters leads to a more efficient authenticity testing tool, which avoids false positive cases and provides a lower detection limit for added water in juices not made from concentrate, whatever the origin of the sample tested.


Subject(s)
Beverages/analysis , Citrus , Ethanol/analysis , Oxygen Isotopes/analysis , Oxygen/analysis , Water/analysis , Fermentation , Fruit , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...