Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36146334

ABSTRACT

This research describes a wearable skin hydration sensor based on cotton textile to determine the state of hydration within the skin via impedance analysis. The sensor structure comprises a textile substrate, thermoplastic over-layer, conductive patterns, and encapsulant, designed for stable and reliable monitoring of the skin's impedance change in relation to hydration level. The porcine skin with different hydration levels was prepared as a model system of the skin, and the textile-based sensor carefully investigated the porcine skin samples' impedance characteristics. The impedance study reveals that (1) the total impedance of skin decreases as its hydration level increases, and (2) the impedance of the stratum corneum and epidermis layers are more dominantly affected by the hydration level of the skin than the dermis layer. Even after repetitive bending cycles, the impedance data of skin measured by the sensor exhibit a reliable dependence on the skin hydration level, which validates the flexibility and durability of the sensor. Finally, it is shown that the textile-based skin hydration sensor can detect various body parts' different hydration levels of human skin while maintaining a stable conformal contact with the skin. The resulting data are well-matched with the readings from a commercial skin hydration sensor.


Subject(s)
Textiles , Wearable Electronic Devices , Electric Impedance , Humans , Skin
2.
Biochip J ; 16(3): 326-333, 2022.
Article in English | MEDLINE | ID: mdl-35909465

ABSTRACT

Loop-mediated isothermal amplification (LAMP) may be used in molecular and point-of-care diagnostics for pathogen detection. The amplification occurs under isothermal conditions using up to six primers. However, non-specific amplification is frequently observed in LAMP. Non-specific amplification has the potential to be triggered by forward and reverse internal primers. And the relatively low reaction temperature (55-65 °C) induces the secondary structure via primer-primer interactions. Primer redesign and probe design have been recommended to solve this problem. LAMP primers have strict conditions, such as Tm, GC contents, primer dimer, and distance between primers compared to conventional PCR primers. Probe design requires specialized knowledge to have high specificity for a target. In polymerase chain reaction (PCR), some chemicals or proteins are used for improving specificity and efficiency. Therefore, we hypothesized that additives can suppress the non-specific amplification. In this study, tetramethylammonium chloride (TMAC), formamide, dimethyl sulfoxide, Tween 20, and bovine serum albumin have been used as LAMP additives. In our study, TMAC was presented as a promising additive for suppressing non-specific amplification in LAMP. Supplementary Information: The online version contains supplementary material available at 10.1007/s13206-022-00070-3.

3.
Anal Bioanal Chem ; 414(16): 4685-4696, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35501506

ABSTRACT

Respiratory illness caused by influenza virus is a serious public health problem worldwide. As the symptoms of influenza virus infection are similar to those of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, it is essential to distinguish these two viruses. Therefore, to properly respond to a pathogen, a detection method that is capable of rapid and accurate diagnosis in a hospital or at home is required. To satisfy this need, we applied loop-mediated isothermal amplification (LAMP) and an isothermal nucleic acid amplification technique, along with a system to analyze the results without specialized equipment, a lateral flow assay (LFA). Using the platform developed in this study, all processes, from sample preparation to detection, can be performed without special equipment. Unlike existing PCR methods, the nucleic acid amplification can be performed in the field because hot packs do not require electricity. Thus, the designed platform can provide rapid results without the need to transport the samples to a laboratory or hospital. These advantages are not limited to operations in developing countries with poor access to medical systems. In conclusion, the developed technology is a promising tool for infectious disease management that allows for rapid identification of infectious diseases and appropriate treatment of patients.


Subject(s)
COVID-19 , Orthomyxoviridae , COVID-19/diagnosis , Humans , Nucleic Acid Amplification Techniques/methods , Orthomyxoviridae/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Anal Methods ; 13(38): 4429-4436, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34486596

ABSTRACT

In this study, a new platform for the detection of porcine circovirus 2 was developed by avidin-biotin complex based lateral flow assay (LAMP-LFA). Improved detection sensitivity was attained by using loop mediated isothermal amplification (LAMP) with a low limit of detection (LOD), so the platform can be used to detect even early or asymptomatic stages of infection. LFA, which requires no specialized equipment, facilitates the use of point-of-care (POC) tests. Therefore, by applying LFA, the result can be confirmed accurately with the naked eye. Moreover, this platform has a unique structure using a single-tag detection system. The avidin-biotin interaction is the strongest interaction between proteins and has a higher Kd value than antigen-antibody interactions. Thus, the results are stable and can be clearly confirmed. The high sensitivity of LAMP-LFA enables all steps to be completed in 30 min. As a result, it could be applied to different targets, such as other pathogens. Future POC diagnostic studies are expected to be of great practical benefit.


Subject(s)
Circovirus , Animals , Avidin , Biotin , Circovirus/genetics , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Swine
5.
Lab Anim Res ; 28(3): 181-91, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23091518

ABSTRACT

Liriope platyphylla is a medical herb that has long been used in Korea and China to treat cough, sputum, neurodegenerative disorders, obesity, and diabetes. The aims of this study were to determine the antidiabetic and antiobesity effects of aqueous extract of L. platyphylla (AEtLP) through glucose and lipid regulation in both pre-diabetes and obesity stage of type II diabetes model. Two concentrations of AEtLP were orally administrated to OLETF (Otsuka Long-Evans Tokushima Fatty) rats once a day for 2 weeks, after which changes in glucose metabolism and fat accumulation were measured. Abdominal fat mass dramatically decreased in AEtLP-treated OLETF rats, whereas glucose concentration slightly decreased in all AEtLP-treated rats. However, compared to vehicle-treated OLETF rats, only AEtLP10 (10% concentration)-treated OLETF rats displayed significant induction of insulin production, whereas AEtLP5 (5% concentration)-treated OLETF rats showed a lower level of insulin. Although serum adiponectin level increased in only AEtLP5-treated rats, significant alteration of lipid concentration was detected in AEtLP5-treated OLETF rats. Expression of Glut-1 decreased in all AEtLP-treated rats, whereas Akt phosphorylation increased only in AEtLP10-treated OLETF rats. Furthermore, the pattern of Glut-3 expression was very similar with that of Glut-1 expression, which roughly corresponded with the phosphorylation of c-Jun N-teminal kinase (JNK) and p38 in the mitogen-activated protein kinase pathway. Therefore, these findings suggest that AEtLP should be considered as a therapeutic candidate during pre-diabetes and obesity stage capable of inducing insulin secretion from pancreatic ß-cells, glucose uptake in liver cells, as well as a decrease in fat and lipid accumulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...