Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 7(6): 064003, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344673

ABSTRACT

Purpose: Convolutional neural network (CNN) methods have been proposed to quantify lesions in medical imaging. Commonly, more than one imaging examination is available for a patient, but the serial information in these images often remains unused. CNN-based methods have the potential to extract valuable information from previously acquired imaging to better quantify lesions on current imaging of the same patient. Approach: A pretrained CNN can be updated with a patient's previously acquired imaging: patient-specific fine-tuning (FT). In this work, we studied the improvement in performance of lesion quantification methods on magnetic resonance images after FT compared to a pretrained base CNN. We applied the method to two different approaches: the detection of liver metastases and the segmentation of brain white matter hyperintensities (WMH). Results: The patient-specific fine-tuned CNN has a better performance than the base CNN. For the liver metastases, the median true positive rate increases from 0.67 to 0.85. For the WMH segmentation, the mean Dice similarity coefficient increases from 0.82 to 0.87. Conclusions: We showed that patient-specific FT has the potential to improve the lesion quantification performance of general CNNs by exploiting a patient's previously acquired imaging.

2.
J Med Imaging (Bellingham) ; 6(4): 044003, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31620549

ABSTRACT

Primary tumors have a high likelihood of developing metastases in the liver, and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks to detect liver metastases. First, the liver is automatically segmented using the six phases of abdominal dynamic contrast-enhanced (DCE) MR images. Next, DCE-MR and diffusion weighted MR images are used for metastases detection within the liver mask. The liver segmentations have a median Dice similarity coefficient of 0.95 compared with manual annotations. The metastases detection method has a sensitivity of 99.8% with a median of two false positives per image. The combination of the two MR sequences in a dual pathway network is proven valuable for the detection of liver metastases. In conclusion, a high quality liver segmentation can be obtained in which we can successfully detect liver metastases.

3.
PLoS One ; 14(5): e0217053, 2019.
Article in English | MEDLINE | ID: mdl-31095624

ABSTRACT

OBJECTIVES: Accurate classification of focal liver lesions is an important part of liver disease diagnostics. In clinical practice, the lesion type is often determined from the abdominal MR examination, which includes T2-weighted and dynamic contrast enhanced (DCE) MR images. To date, only T2-weighted images are exploited for automatic classification of focal liver lesions. In this study additional MR sequences and risk factors are used for automatic classification to improve the results and to make a step forward to a clinically useful aid for radiologists. MATERIALS AND METHODS: Clinical MRI data sets of 95 patients with in total 125 benign lesions (40 adenomas, 29 cysts and 56 hemangiomas) and 88 malignant lesions (30 hepatocellular carcinomas (HCC) and 58 metastases) were included in this study. Contrast curve, gray level histogram, and gray level co-occurrence matrix texture features were extracted from the DCE-MR and T2-weighted images. In addition, risk factors including the presence of steatosis, cirrhosis, and a known primary tumor were used as features. Fifty features with the highest ANOVA F-score were selected and fed to an extremely randomized trees classifier. The classifier evaluation was performed using the leave-one-out principle and receiver operating characteristic (ROC) curve analysis. RESULTS: The overall accuracy for the classification of the five major focal liver lesion types is 0.77. The sensitivity/specificity is 0.80/0.78, 0.93/0.93, 0.84/0.82, 0.73/0.56, and 0.62/0.77 for adenoma, cyst, hemangioma, HCC, and metastasis, respectively. CONCLUSION: The proposed classification system using features derived from clinical DCE-MR and T2-weighted images, with additional risk factors is able to differentiate five common types of lesions and is a step forward to a clinically useful aid for focal liver lesion diagnosis.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated , Adenoma/diagnostic imaging , Algorithms , Area Under Curve , Automation , Cysts/diagnostic imaging , False Positive Reactions , Hemangioma/diagnostic imaging , Humans , Machine Learning , ROC Curve , Radiology/methods , Reproducibility of Results , Risk Factors , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL