Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(19): 13129-13141, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38655481

ABSTRACT

New amide conjugates 1-6 of hydroxycinnamic acids (HCA) and 5'-deoxy-5-fluorocytidine (5-dFCR), the prodrug of 5-fluorouracil (5-FU), were synthesized and tested in vitro against pancreatic cancer lines (PDAC). The compounds showed slightly higher efficacy against primary BxPC-3 cells (IC50 values of 14-45 µM) than against metastatic AsPC-1 (IC50 values of 37-133 µM), and similar to that of 5-FU for both PDAC lines. Compound 1, which has a para-(acetyloxy)coumaroyl substituent, was found to be the most potent (IC50 = 14 µM) with a selectivity index of approximately 7 to normal dermal fibroblasts (IC50 = 96 µM). The potential pharmacological profiles were discussed on the basis of the ADME data. Docking to the carboxylesterase CES2 showed that the synthesized compounds have the ability to bind via hydrogen bonding between a specific acetate group of the sugar moiety and Ser228, which belongs to the catalytic triad that causes hydrolysis. Docking to albumin, a major transport protein in the circulatory system, revealed a strong interaction of the conjugates at the binding site which is native to warfarin and responsible for its transport in the body.

2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473820

ABSTRACT

New amide conjugates of hydroxycinnamic acids (HCAs) and the known antineoplastic 5,11-dimethyl-5H-indolo[2,3-b]quinoline (DiMIQ), an analog of the natural alkaloid neocryptolepine, were synthesized and tested in vitro for anticancer activity. The compound 9-[((2-hydroxy)cinnamoyl)amino]-5,11-dimethyl-5H-indolo[2,3-b]quinoline (2), which contains the ortho-coumaric acid fragment, demonstrated dose-dependent effectiveness against both normal BxPC-3 and metastatic AsPC-1 pancreatic cancer cells. The IC50 values for AsPC-1 and BxPC-3 were 336.5 nM and 347.5 nM, respectively, with a selectivity index of approximately 5 for both pancreatic cancer cells compared to normal dermal fibroblasts. Conjugate 2 did not exhibit any hemolytic activity against human erythrocytes at the tested concentration. Computational studies were performed to predict the pharmacokinetic profile and potential mechanism of action of the synthesized conjugates. These studies focused on the ADME properties of the conjugates and their interactions with DNA, as well as DNA-topoisomerase alpha and beta complexes. All of the conjugates studied showed approximately one order of magnitude stronger binding to DNA compared to the reference DiMIQ, and approximately two orders of magnitude stronger binding to the topoisomerase II-DNA complex compared to DiMIQ. Conjugate 2 was predicted to have the strongest binding to the enzyme-DNA complex, with a Ki value of 2.8 nM.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Quinolines , Humans , Molecular Docking Simulation , Pancreatic Hormones , Coumaric Acids , Multienzyme Complexes , DNA , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor
3.
Antimicrob Agents Chemother ; 68(1): e0095523, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38092678

ABSTRACT

The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.


Subject(s)
Antifungal Agents , Candida , Humans , Antifungal Agents/pharmacology , Candida auris , Liposomes , Microbial Sensitivity Tests , Biofilms
4.
J Parasitol Res ; 2023: 6675081, 2023.
Article in English | MEDLINE | ID: mdl-38046256

ABSTRACT

New protocol for the preparation of the novel caffeic acid derivatives using the Wittig reaction has been applied to follow the principles of green chemistry. The compounds have been evaluated against chloroquine-sensitive and chloroquine-resistant P. falciparum strains. Their cytotoxicity to normal human dermal fibroblasts and their propensity to induce hemolysis have been also determined. Ethyl (2E)-3-(2,3,4-trihydroxyphenyl)-2-methylpropenoate has exhibited the highest antiplasmodial activity against P. falciparum strains without the cytotoxic and hemolytic effects. This derivative is significantly more potent than caffeic acid parent structure. The application of our one-step procedure has been shown to be rapid and efficient. It allows for an easy increase of input data to refine the structure-activity relationship model of caffeates as the antimalarials. The one-step approach meets the conditions of "atom economy" and eliminates hazardous materials. Water has been used as the effective medium for the Wittig reaction to avoid toxic organic solvents.

5.
ACS Biomater Sci Eng ; 9(8): 4646-4653, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37526989

ABSTRACT

A novel composite based on biocompatible hydroxyapatite (HA) nanoparticles and Cu-HKUST-1 (Cu-HKUST-1@HA) has been prepared following a layer-by-layer strategy. Cu-HKUST-1 was carefully selected from a group of four Cu-based metal-organic frameworks as the material with the most promising antimicrobial activity. The formation of a colloidal Cu-HKUST-1 layer on HA nanoparticles was confirmed by various techniques, e.g., infrared spectroscopy, powder X-ray diffraction, N2 sorption, transmission electron microscopy imaging, electron paramagnetic resonance, and X-ray absorption spectroscopy. Importantly, such a Cu-HKUST-1 layer significantly improved the nanomechanical properties of the composite, with Young's modulus equal to that of human cortical bone (13.76 GPa). At the same time, Cu-HKUST-1@HA has maintained the negative zeta potential (-16.3 mV in pH 7.4) and revealed biocompatibility toward human dermal fibroblasts up to a concentration of 1000 µg/mL, without inducing ex vivo hemolysis. Chemical stability studies of the composite over 21 days in a buffer-simulated physiological fluid allowed a detailed understanding of the transformations that the Cu-HKUST-1@HA undergoes over time. Finally, it has been confirmed that the Cu-HKUST-1 layer provides antibacterial properties to HA, and the synergism reached in this way makes it promising for bone tissue regeneration.


Subject(s)
Durapatite , Metal-Organic Frameworks , Humans , Durapatite/pharmacology , Durapatite/chemistry , Metal-Organic Frameworks/chemistry , Bone and Bones , Bone Regeneration
6.
Bioorg Chem ; 139: 106737, 2023 10.
Article in English | MEDLINE | ID: mdl-37482048

ABSTRACT

The new dual 5HT1A/5HT7 receptor ligands were designed based on the purine-2,6-dione scaffold with the fluorine atom. Twenty-one new derivatives were synthesized, and their structure-activity relationship was summarized. Compound 11 (7-(2-(3-fluorophenyl)-2-oxoethyl)-8-((4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) showed the highest affinity to 5HT1AR and 5HT7R, and was the most potent antagonist of 5-HT1AR (Kb = 0.26 ± 0.1 nM) which activity can be to reference compound NAN-190 (Kb = 0.26 ± 0.1 nM). The experimentally established physicochemical parameters of compound 11 showed that compound, as slightly ionized in the blood, could penetrate the blood-brain barrier. A molecular docking study showed that the fluorine substitution introduces additional stabilization effects on binding to 5HT1A/5HT7Rs. In animal assays of depression and anxiety, compound 11 revealed activity in terms of dosage compared to marketed psychotropics such as fluoxetine, citalopram, and sertraline.


Subject(s)
Antidepressive Agents , Fluorine , Animals , Ligands , Molecular Docking Simulation , Antidepressive Agents/pharmacology , Structure-Activity Relationship , Purines/chemistry
7.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-37259302

ABSTRACT

Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.

8.
Pharmaceutics ; 15(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678808

ABSTRACT

Pancreatic cancer (PC) is one of the deadliest cancers so there is an urgent need to develop new drugs and therapies to treat it. Liposome-based formulations of naturally-derived bioactive compounds are promising anticancer candidates due to their potential for passive accumulation in tumor tissues, protection against payload degradation, and prevention of non-specific toxicity. We chose the naturally-derived flavonoid baicalein (BAI) due to its promising effect against pancreatic ductal adenocarcinoma (PDAC) and encapsulated it into a liposomal bilayer using the passive loading method, with an almost 90% efficiency. We performed a morphological and stability analysis of the obtained BAI liposomal formulation and evaluated its activity on two-dimensional and three-dimensional pancreatic cell models. As the result, we obtained a stable BAI-encapsulated liposomal suspension with a size of 100.9 nm ± 2.7 and homogeneity PDI = 0.124 ± 0.02, suitable for intravenous administration. Furthermore, this formulation showed high cytotoxic activity towards AsPC-1 and BxPC-3 PDAC cell lines (IC50 values ranging from 21 ± 3.6 µM to 27.6 ± 4.1 µM), with limited toxicity towards normal NHDF cells and a lack of hemolytic activity. Based on these results, this new BAI liposomal formulation is an excellent candidate for potential anti-PDAC therapy.

9.
Curr Top Med Chem ; 23(3): 214-226, 2023.
Article in English | MEDLINE | ID: mdl-36411573

ABSTRACT

Malaria, caused by parasites of the Plasmodium species and transmitted through the bites of infected female Anopheles mosquitoes, is still a fatal and dangerous disease in mainly tropical and subtropical regions. The widespread resistance of P. falciparum to antimalarial drugs forces the search for new molecules with activity against this parasite. While a large number of compounds can inhibit P. falciparum growth in vitro, unfortunately, only a limited number of targets have been identified so far. One of the most promising approaches has been the identification of effective inhibitors of P-type cation-transporter ATPase 4 (PfATP4) in P. falciparum. PfATP4 is a Na+ efflux pump that maintains a low cytosolic Na+ in the parasite. Thus, upon treatment with PfATP4 inhibitors, the parasites rapidly accumulate Na+, which triggers processes leading to parasite death. PfATP4 is present in the parasite plasma membrane but is absent in mammals; its exclusivity thus makes it a good antimalarial drug target. The current review presents PfATP4 function in the context of the pharmacological influence of its inhibitors. In addition, compounds with inhibitory activities belonging to spiroindolones, dihydroisoquinolones, aminopyrazoles, pyrazoleamides, and 4-cyano-3-methylisoquinolines, are also reviewed. Particular emphasis is placed on the results of preclinical and clinical studies in which their effectiveness was tested. PfATP4-associated antimalarials rapidly cleared parasites in mouse models and preliminary human trials. These findings highlight a fundamental biochemical mechanism sensitive to pharmacological intervention that can form a medicinal chemistry approach for antimalarial drug design to create new molecules with potent PfATP4 inhibitory activity.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Mice , Female , Humans , Adenosine Triphosphatases/metabolism , Antimalarials/chemistry , Plasmodium falciparum , Malaria/drug therapy , Cations/metabolism , Cations/pharmacology , Cations/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mammals/metabolism
10.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232749

ABSTRACT

This study aimed to extend the body of preclinical research on prototype dual-acting compounds combining the pharmacophores relevant for inhibiting cyclic nucleotide phosphodiesterase 10 (PDE10A) and serotonin 5-HT1A/5-HT7 receptor (5-HT1AR/5-HT7R) activity into a single chemical entity (compounds PQA-AZ4 and PQA-AZ6). After i.v. administration of PQA-AZ4 and PQA-AZ6 to rats, the brain to plasma ratio was 0.9 and 8.60, respectively. After i.g. administration, the brain to plasma ratio was 5.7 and 5.3, respectively. An antidepressant-like effect was observed for PQA-AZ6 in the forced swim test, after chronic 21-day treatment via i.p. administration with 1 mg/kg/day. Both compounds revealed an increased level of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus and prefrontal cortex. Moreover, PQA-AZ4 and PQA-AZ6 completely reversed (+)-MK801-induced memory disturbances comparable with the potent PDE10 inhibitor, compound PQ-10. In the safety profile that included measurements of plasma glucose, triglyceride, and total cholesterol concentration, liver enzyme activity, the total antioxidant activity of serum, together with weight gain, compounds exhibited no significant activity. However, the studied compounds had different effects on human normal fibroblast cells as revealed in in vitro assay. The pharmacokinetic and biochemical results support the notion that these novel dual-acting compounds might offer a promising therapeutic tool in CNS-related disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Dementia , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antioxidants , Biological Availability , Blood Glucose , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cholesterol , Dizocilpine Maleate , Humans , Memory Disorders/drug therapy , Nucleotides, Cyclic , Phosphoric Diester Hydrolases , RNA, Messenger , Rats , Serotonin/metabolism , Triglycerides
11.
Proc Natl Acad Sci U S A ; 119(38): e2211424119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095193

ABSTRACT

Extracellular vesicles mediate community interactions among cells ranging from unicellular microbes to complex vertebrates. Extracellular vesicles of the fungal pathogen Candida albicans are vital for biofilm communities to produce matrix, which confers environmental protection and modulates community dispersion. Infections are increasingly due to diverse Candida species, such as the emerging pathogen Candida auris, as well as mixed Candida communities. Here, we define the composition and function of biofilm-associated vesicles among five species across the Candida genus. We find similarities in vesicle size and release over the biofilm lifespan. Whereas overall cargo proteomes differ dramatically among species, a group of 36 common proteins is enriched for orthologs of C. albicans biofilm mediators. To understand the function of this set of proteins, we asked whether mutants in select components were important for key biofilm processes, including drug tolerance and dispersion. We found that the majority of these cargo components impact one or both biofilm processes across all five species. Exogenous delivery of wild-type vesicle cargo returned mutant phenotypes toward wild type. To assess the impact of vesicle cargo on interspecies interactions, we performed cross-species vesicle addition and observed functional complementation for both biofilm phenotypes. We explored the biologic relevance of this cross-species biofilm interaction in mixed species and mutant studies examining the drug-resistance phenotype. We found a majority of biofilm interactions among species restored the community's wild-type behavior. Our studies indicate that vesicles influence the development of protective monomicrobial and mixed microbial biofilm communities.


Subject(s)
Biofilms , Candida albicans , Extracellular Vesicles , Fungal Proteins , Animals , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/physiology , Drug Resistance, Fungal , Extracellular Vesicles/metabolism , Fungal Proteins/metabolism , Proteome/metabolism
12.
Steroids ; 188: 109115, 2022 12.
Article in English | MEDLINE | ID: mdl-36154831

ABSTRACT

A series of novel diosgenin (DSG) derivatives has been synthesized and tested in vitro for their antioxidant activity. Initially, four analogues have been evaluated for their cytotoxicity using normal human skin fibroblast (NHDF) as model cells. As a result, 84% of NHDF cells were still alive at 5 µM, so these compounds can be considered as innoxious to fibroblasts at this concentration. Then, hemolytic activity against human erythrocytes was studied in order to evaluate the potential impact of tested compounds against normal host cells. The result < 5% of hemolysis rates suggest no lytic activity for most compounds. After that, the main test - evaluation the antioxidant effect of DSG and its new derivatives against lipid peroxidation in the o/w emulsion model - was performed. The most promising compound (8) exhibited the significant antioxidant activity and the biocompatibility towards normal human dermal fibroblasts and red bloods cells. This p-aminobenzoic derivative revealed 61.6% blocking of induced lipid oxidation. Furthermore, eleven predicted ADME properties were predicted for all tested compounds and revealed that they are in compliance with drug-likeness criteria.


Subject(s)
Diosgenin , Humans , Diosgenin/pharmacology , Antioxidants/pharmacology , Hemolysis , Cell Death
13.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628352

ABSTRACT

Despite many attempts, trials, and treatment procedures, pancreatic ductal adenocarcinoma (PDAC) still ranks among the most deadly and treatment-resistant types of cancer. Hence, there is still an urgent need to develop new molecules, drugs, and therapeutic methods against PDAC. Naturally derived compounds, such as pentacyclic terpenoids, have gained attention because of their high cytotoxic activity toward pancreatic cancer cells. Ursolic acid (UA), as an example, possesses a wide anticancer activity spectrum and can potentially be a good candidate for anti-PDAC therapy. However, due to its minimal water solubility, it is necessary to prepare an optimal nano-sized vehicle to overcome the low bioavailability issue. Poly(lactic-co-glycolic acid) (PLGA) polymeric nanocarriers seem to be an essential tool for ursolic acid delivery and can overcome the lack of biological activity observed after being incorporated within liposomes. PLGA modification, with the addition of PEGylated phospholipids forming the lipid shell around the polymeric core, can provide additional beneficial properties to the designed nanocarrier. We prepared UA-loaded hybrid PLGA/lipid nanoparticles using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay for AsPC-1 and BxPC-3 cells and determined the hemolytic effect on human erythrocytes with transmission electron microscopic (TEM) visualization of the nanoparticles and their cellular uptake. Hybrid UA-loaded lipid nanoparticles were also examined in terms of their stability, coating dynamics, and ursolic acid loading. We established innovative and repeatable preparation procedures for novel hybrid nanoparticles and obtained biologically active nanocarriers for ursolic acid with an IC50 below 20 µM, with an appropriate size for intravenous dosage (around 150 nm), high homogeneity of the sample (below 0.2), satisfactory encapsulation efficiency (up to 70%) and excellent stability. The new type of hybrid UA-PLGA nanoparticles represents a further step in the development of potentially effective PDAC therapies based on novel, biologically active, and promising triterpenoids.


Subject(s)
Adenocarcinoma , Nanoparticles , Pancreatic Neoplasms , Triterpenes , Humans , Lactic Acid , Liposomes , Pancreatic Neoplasms/drug therapy , Particle Size , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Triterpenes/pharmacology , Ursolic Acid
14.
Eur J Med Chem ; 233: 114218, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35248836

ABSTRACT

Neuropsychiatric symptoms (NPS), such as psychosis, depression and anxiety are frequently observed among patients with dementia. NPS is treated by off-label psychotropic medications that are only modestly effective in dementia patients, with a high risk of adverse events and cognitive decline. Considering the above, there is an unmet need for a well-tolerated and effective therapy of NPS in dementia. We designed and synthesized a library of dual-acting compounds as phosphodiesterase type-10A inhibitors and serotonin 5-HT1AR ligands. The most potent molecules, compounds 4 and 8, as partial agonists of 5-HT1AR and PDE10A inhibitors, exhibited a very high permeability of the blood-brain barrier. Compounds 4 and 8 displayed antipsychotic- and antidepressant-like activity and restored recognition memory deficits in mice. The overall effectiveness, pharmacokinetic and bioavailability studies imply the therapeutic-like potential of the presented dual-acting compounds as a method of treatment of NPS in dementia.


Subject(s)
Antipsychotic Agents , Dementia , Animals , Antipsychotic Agents/pharmacology , Dementia/drug therapy , Dementia/psychology , Humans , Ligands , Mice , Phosphoric Diester Hydrolases , Serotonin
15.
Nanoscale ; 14(14): 5514-5528, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35343556

ABSTRACT

A highly bioactive glass solvBG76 in a binary system 76SiO2-24CaO (wt%) was prepared following a solvothermal path of the synthesis. The facile synthesis, in terms of the steps and reagents needed, enabled the achievement of a mesoporous material. Many factors such as nano-size (<50 nm), different morphology (non-spherical), use of an unconventional network modifier (calcium hydroxide) during the synthesis, a structure free of crystalline impurities, and textural properties greatly enhanced the kinetic deposition process of hydroxyapatite (HA) when contacting with physiological fluids. The formation of a HA layer on the glass was analyzed by various techniques, namely XRD, IR-ATR, Raman, XPS, EDS analyses, SEM, and HR-TEM imaging. The results obtained were compared to the 45S5 glass tested as a reference biomaterial as well as 70S30C-a glass with similar size and composition to reported solvBG76 but obtained by the conventional sol-gel method. For the first time, superior apatite-mineralization ability in less than 1 h in a physiological-like buffer was achieved. This unique bioactivity is accompanied by biocompatibility and hemocompatibility, which was indicated by a set of various assays in human dermal fibroblasts and MC3T3 mouse osteoblast precursor cells, as well as hemolytic activity determination.


Subject(s)
Durapatite , Glass , Animals , Apatites , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry , Glass/chemistry , Mice
16.
Biomed Pharmacother ; 145: 112424, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34785417

ABSTRACT

Small drug-like molecules that can block the function of serotonin 5-HT2A receptors have garnered considerable attention due to their ability to inhibit platelet aggregation and the possible prevention of atherosclerotic lesions. Although clinical data provided compelling evidence for the efficacy of this approach in the prevention of various cardiovascular conditions, the chemical space of 5-HT2A receptor antagonists is limited to ketanserin and sarpogrelate. To expand the portfolio of novel chemical motifs with potential antiplatelet activity, we evaluated the antiplatelet activity of a series of 6-fluorobenzo[d]isoxazole derivatives that possess a high affinity for 5-HT2A receptor. Here we describe in vitro studies showing that 6-fluorobenzo[d]isoxazole derivatives exert promising antiplatelet activity in three various in vitro models of platelet aggregation, as well as limit serotonin-induced vasoconstriction. Compound AZ928 showed in vitro activity greater than the clinically approved drug sarpogrelate. In addition to promising antiplatelet activity, the novel series was characterized by a favorable safety profile. Our findings show that the novel series exerts promising antiplatelet efficacy while being deprived of potential side effects, such as hemolytic activity, which render these compounds as potential substances for further investigation in the field of cardiovascular research.


Subject(s)
Cardiovascular Diseases/prevention & control , Isoxazoles/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Humans , Isoxazoles/chemistry , Isoxazoles/toxicity , Male , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/toxicity , Rats , Rats, Wistar , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/toxicity , Structure-Activity Relationship , Succinates/pharmacology , Vasoconstriction/drug effects
17.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34948361

ABSTRACT

Malaria is still one of the most dangerous infectious diseases and the emergence of drug resistant parasites only worsens the situation. A series of new tetrahydro-ß-carbolines were designed, synthesized by the Pictet-Spengler reaction, and characterized. Further, the compounds were screened for their in vitro antiplasmodial activity against chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Moreover, molecular modeling studies were performed to assess the potential action of the designed molecules and toxicity assays were conducted on the human microvascular endothelial (HMEC-1) cell line and human red blood cells. Our studies identified N-(3,3-dimethylbutyl)-1-octyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxamide (7) (a mixture of diastereomers) as the most promising compound endowed with the highest antiplasmodial activity, highest selectivity, and lack of cytotoxicity. In silico simulations carried out for (1S,3R)-7 provided useful insights into its possible interactions with enzymes essential for parasite metabolism. Further studies are underway to develop the optimal nanosized lipid-based delivery system for this compound and to determine its precise mechanism of action.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Carbolines/chemical synthesis , Cell Line , Drug Design , Humans , Malaria, Falciparum/drug therapy , Molecular Docking Simulation , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism
18.
Nat Commun ; 12(1): 6235, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716343

ABSTRACT

The fungal pathogen Candida albicans can form biofilms that protect it from drugs and the immune system. The biofilm cells release extracellular vesicles (EVs) that promote extracellular matrix formation and resistance to antifungal drugs. Here, we define functions for numerous EV cargo proteins in biofilm matrix assembly and drug resistance, as well as in fungal cell adhesion and dissemination. We use a machine-learning analysis of cargo proteomic data from mutants with EV production defects to identify 63 candidate gene products for which we construct mutant and complemented strains for study. Among these, 17 mutants display reduced biofilm matrix accumulation and antifungal drug resistance. An additional subset of 8 cargo mutants exhibit defects in adhesion and/or dispersion. Representative cargo proteins are shown to function as EV cargo through the ability of exogenous wild-type EVs to complement mutant phenotypic defects. Most functionally assigned cargo proteins have roles in two or more of the biofilm phases. Our results support that EVs provide community coordination throughout biofilm development in C. albicans.


Subject(s)
Biofilms/growth & development , Candida albicans/physiology , Drug Resistance, Fungal/physiology , Extracellular Vesicles/metabolism , Fungal Proteins/metabolism , Animals , Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/cytology , Candida albicans/drug effects , Candida albicans/pathogenicity , Candidiasis/microbiology , Cell Adhesion/drug effects , Central Venous Catheters/microbiology , Drug Resistance, Fungal/drug effects , Endosomal Sorting Complexes Required for Transport/metabolism , Extracellular Matrix/chemistry , Extracellular Vesicles/chemistry , Female , Fungal Proteins/genetics , Mutation , Rats
19.
Materials (Basel) ; 14(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34361351

ABSTRACT

Cancer represents one of the most serious health problems and the second leading cause of death around the world. Heterocycles, due to their prevalence in nature as well as their structural and chemical diversity, play an immensely important role in anti-cancer drug discovery. In this paper, a series of hydantoin and purine derivatives containing a 4-acetylphenylpiperazinylalkyl moiety were designed, synthesized, and biologically evaluated for their anticancer activity on selected cancer cell lines (PC3, SW480, SW620). Compound 4, a derivative of 3',4'-dihydro-2'H-spiro[imidazolidine-4,1'-naphthalene]-2,5-dione, was the most effective against SW480, SW620, and PC3 cancer cell lines. Moreover, 4 has high tumor-targeting selectivity. Based on docking studies, it was concluded that R isomers of 3',4'-dihydro-2'H-spiro[imidazolidine-4,1'-naphthalene]-2,5-dione could be further studied as promising scaffolds for the development of thymidine phosphorylase inhibitors.

20.
Materials (Basel) ; 14(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34442909

ABSTRACT

Many studies are being performed to develop effective carriers for controlled cytostatic delivery wherein albumin is a promising material due to its tendency to accumulate near cancer cells. The novelty of this work involves the development of the synthesis methodology of albumin nanoparticles and their biological and physicochemical evaluation. Albumin particles were obtained via the salt-induced precipitation and K3PO4 was used as a salting-out agent. Various concentrations of protein and salting-out agent solutions were mixed using a burette or a syringe system. It was proved that the size of the particles depended on the concentrations of the reagents and the methodology applied. As a result of a process performed using a burette and 2 M K3PO4, albumin spheres having a size 5-25 nm were obtained. The size of nanospheres and their spherical shape was confirmed via TEM analysis. The use of a syringe system led to preparation of particles of large polydispersity. The highest albumin concentration allowing for synthesis of homogeneous particles was 2 g/L. The presence of albumin in spheres was confirmed via the FT-IR technique and UV-Vis spectroscopy. All samples showed no cytotoxicity towards normal human dermal fibroblasts and no hemolytic properties against human erythrocytes (the hemolysis did not exceed 2.5%).

SELECTION OF CITATIONS
SEARCH DETAIL
...