Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Alzheimers Dement ; 20(9): 5912-5925, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39136296

ABSTRACT

BACKGROUND: Education influences brain health and dementia. However, its impact across regions, specifically Latin America (LA) and the United States (US), is unknown. METHODS: A total of 1412 participants comprising controls, patients with Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD) from LA and the US were included. We studied the association of education with brain volume and functional connectivity while controlling for imaging quality and variability, age, sex, total intracranial volume (TIV), and recording type. RESULTS: Education influenced brain measures, explaining 24%-98% of the geographical differences. The educational disparities between LA and the US were associated with gray matter volume and connectivity variations, especially in LA and AD patients. Education emerged as a critical factor in classifying aging and dementia across regions. DISCUSSION: The results underscore the impact of education on brain structure and function in LA, highlighting the importance of incorporating educational factors into diagnosing, care, and prevention, and emphasizing the need for global diversity in research. HIGHLIGHTS: Lower education was linked to reduced brain volume and connectivity in healthy controls (HCs), Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD). Latin American cohorts have lower educational levels compared to the those in the United States. Educational disparities majorly drive brain health differences between regions. Educational differences were significant in both conditions, but more in AD than FTLD. Education stands as a critical factor in classifying aging and dementia across regions.


Subject(s)
Alzheimer Disease , Brain , Educational Status , Magnetic Resonance Imaging , Humans , Latin America , Male , Female , United States , Brain/pathology , Brain/diagnostic imaging , Aged , Alzheimer Disease/pathology , Middle Aged , Frontotemporal Lobar Degeneration/pathology , Dementia/pathology , Dementia/epidemiology
2.
Article in English | MEDLINE | ID: mdl-36583137

ABSTRACT

Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/NIH (R01AG057234), Alzheimer's Association (SG-20-725707-ReDLat), Rainwater Foundation, Takeda (CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT (2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia (BPIN2018000100059), Universidad del Valle (CI 5316); ANID/FONDECYT Regular (1210195, 1210176, 1210176); ANID/FONDAP (15150012); ANID/PIA/ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.

SELECTION OF CITATIONS
SEARCH DETAIL