Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Antimicrob Chemother ; 79(4): 810-814, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38366372

ABSTRACT

OBJECTIVES: An Escherichia coli isolate, WGS1363, showed resistance to piperacillin/tazobactam but susceptibility to cephalosporins and contained a previously unrecognized ß-lactamase, CTX-M-255, as the only acquired ß-lactamase. CTX-M-255 was identical to CTX-M-27 except for a G239S substitution. Here, we characterize the hydrolytic spectrum of CTX-M-255 and a previously reported ß-lactamase, CTX-M-178, also containing a G239S substitution and compare it to their respective parental enzymes, CTX-M-27 and CTX-M-15. METHODS: All ß-lactamase genes were expressed in E. coli TOP10 and MICs to representative ß-lactam-antibiotics were determined. Furthermore, blaCTX-M-15,  blaCTX-M-27, blaCTX-M-178 and blaCTX-M-255 with C-terminal His-tag fusions were affinity purified for enzyme kinetic assays determining Michaelis-Menten kinetic parameters against representative ß-lactam-antibiotics and IC50s of clavulanate, sulbactam, tazobactam and avibactam. RESULTS: TOP10-transformants expressing blaCTX-M-178 and blaCTX-M-255 showed resistance to penicillin/ß-lactamase combinations and susceptibility to cephalothin and cefotaxime in contrast to transformants expressing blaCTX-M-15 and blaCTX-M-27. Determination of enzyme kinetic parameters showed that CTX-M-178 and CTX-M-255 both lacked hydrolytic activity against cephalosporins and showed impaired hydrolytic efficiency against penicillin antibiotics compared to their parental enzymes. Both enzymes appeared more active against piperacillin compared to benzylpenicillin and ampicillin. Compared to their parental enzymes, IC50s of ß-lactamase-inhibitors were increased more than 1000-fold for CTX-M-178 and CTX-M-255. CONCLUSIONS: CTX-M-178 and CTX-M-255, both containing a G239S substitution, conferred resistance to piperacillin/tazobactam and may be characterized as inhibitor-resistant CTX-M ß-lactamases. Inhibitor resistance was accompanied by loss of activity against cephalosporins and monobactams. These findings add to the necessary knowledge base for predicting antibiotic susceptibility from genotypic data.


Subject(s)
Anti-Bacterial Agents , beta-Lactamase Inhibitors , beta-Lactamase Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , beta-Lactamases/genetics , Penicillins/pharmacology , Cephalosporins/pharmacology , Tazobactam/pharmacology , Piperacillin/pharmacology , Monobactams , Piperacillin, Tazobactam Drug Combination , Microbial Sensitivity Tests
2.
Microb Pathog ; 182: 106236, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37419218

ABSTRACT

Salmonella enterica serovar Gallinarum causes Fowl Typhoid in poultry, and it is host specific to avian species. The reasons why S. Gallinarum is restricted to avians, and at the same time predominately cause systemic infections in these hosts, are unknown. In the current study, we developed a surgical approach to study gene expression inside the peritoneal cavity of hens to shed light on this. Strains of the host specific S. Gallinarum, the cattle-adapted S. Dublin and the broad host range serovar, S. Enteritidis, were enclosed in semi-permeable tubes and surgically placed for 4 h in the peritoneal cavity of hens and for control in a minimal medium at 41.2 °C. Global gene-expression under these conditions was compared between serovars using tiled-micro arrays with probes representing the genome of S. Typhimurium, S. Dublin and S. Gallinarum. Among other genes, genes of SPI-13, SPI-14 and the macrophage survival gene mig-14 were specifically up-regulated in the host specific serovar, S. Gallinarum, and further studies into the role of these genes in host specific infection are highly indicated. Analysis of pathways and GO-terms, which were enriched in the host specific S. Gallinarum without being enriched in the two other serovars indicated that host specificity was characterized by a metabolic fine-tuning as well as unique expression of virulence associated pathways. The cattle adapted serovar S. Dublin differed from the two other serovars by a lack of up-regulation of genes encoded in the virulence associated pathogenicity island 2, and this may explain the inability of this serovar to cause disease in poultry.


Subject(s)
Salmonella Infections, Animal , Salmonella enterica , Animals , Female , Cattle , Serogroup , Chickens , Transcriptome , Salmonella enterica/genetics , Salmonella enteritidis/genetics
3.
Arch Microbiol ; 205(4): 117, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36929450

ABSTRACT

Bacterial intercellular signaling mediated by small molecules, also called autoinducers (AIs), enables synchronized behavior in response to environmental conditions, and in many bacterial pathogens, intercellular signaling controls virulence gene expression. However, in the intestinal pathogen Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium), although three signals, named AI-1, AI-2 and AI-3, have been described, their roles in virulence remain elusive. AI-3 is the 3,6- isomer of a previously described Vibrio cholerae signaling molecule; 3,5-dimethylpyrazin-2-ol (3,5-DPO). To elucidate the role of AI-3/DPO in S. Typhimurium, we have mapped the global transcriptomic responses to 3,5- and 3,6-DPO isomers in S. Typhimurium. Our studies showed that DPO affects expression of almost 8% of all genes. Specifically, expression of several genes involved in gut-colonization respond to DPO. Interestingly, most of the affected genes are similarly regulated by 3,5-DPO and 3,6-DPO, respectively, indicating that the two isomers have overlapping roles in S. Typhimurium.


Subject(s)
Transcriptome , Vibrio cholerae , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Lactones/metabolism , Gene Expression Profiling , Vibrio cholerae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
4.
Microbiol Resour Announc ; 12(2): e0118622, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36715532

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) is a potential factor in ulcerative colitis etiology. We report here the complete genome and plasmid sequences of three Escherichia coli isolates, C 237-04 (p7), C 236-04A (p10A), and C 691-04A (p19A), obtained from fecal samples from ulcerative colitis patients in Copenhagen, Denmark.

5.
Microbiol Resour Announc ; 11(8): e0026322, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35862907

ABSTRACT

Here, we report the annotated whole-genome sequence of Klebsiella pneumoniae strain KP_3b, isolated in Zanzibar, Tanzania, from plastic litter. The strain is extended-spectrum ß-lactamase (ESBL) producing and multidrug resistant, encoding 17 resistance genes, most of which are located on a 230,544-bp plasmid. The isolate contains two copies of the blaCTX-M-15 gene and novel insertion elements.

6.
Int J Antimicrob Agents ; 59(4): 106543, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35134504

ABSTRACT

OBJECTIVES: Piperacillin-tazobactam (TZP) is a frequently prescribed antibiotic in hospital settings. Reports suggest in vivo efficacy of TZP, despite in vitro resistance of isolates susceptible to cephalosporins. Escherichia coli (E. coli) isolates hyperproducing TEM-1 ß-lactamase possess this phenotype. This study investigated the influence of tazobactam (TAZ) concentration on piperacillin (PIP) inhibition of such isolates and compared the in vivo efficacy of TZP with cefotaxime (CTX) in an infection model. METHODS: The PIP MICs for E. coli isolates, either hyperproducing TEM-1 because of promoter substitutions (n = 4) or because of gene amplification (n = 2) or producing an inhibitor-resistant TEM-35 (IRT) (n = 1), were determined using increasing concentrations of TAZ in a checkerboard setup. Furthermore, the efficacy of TZP and CTX against the isolates was investigated in a mouse peritonitis model using antibiotic exposures mimicking human conditions. Isolates producing either OXA-48 or CTX-M-15 ß-lactamases were included as controls. RESULTS: Using TAZ concentrations ≤ 64 mg/L, one isolate hyperproducing TEM-1 had a PIP MIC of 8 at TAZ 16 mg/L and two additional isolates at TAZ 64 mg/L. In the mouse peritonitis infection model, reduction of bacterial load in the peritoneum was larger for TZP than CTX only for the CTX-M-15-producing isolate. Larger reductions in bacterial load were observed after CTX treatment than TZP treatment for seven of the eight remaining test isolates. CONCLUSIONS: Piperacillin-tazobactam treatment of E. coli isolates hyperproducing TEM-1 was less effective than CTX treatment and may, for some isolates, be comparable with TZP treatment of isolates producing established resistance markers as IRT or OXA-48.


Subject(s)
Antigens, CD/metabolism , Escherichia coli Infections , Neoplasm Proteins/metabolism , Peritonitis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefotaxime/pharmacology , Cefotaxime/therapeutic use , Escherichia coli , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Mice , Microbial Sensitivity Tests , Piperacillin/pharmacology , Piperacillin/therapeutic use , Piperacillin, Tazobactam Drug Combination/pharmacology , Tazobactam/pharmacology , Tazobactam/therapeutic use , beta-Lactamases/genetics
7.
J Hazard Mater ; 415: 125632, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33770682

ABSTRACT

Plastic pollution is a major issue worldwide, generating massive amounts of smaller plastic particles, including microplastics (MPs). Their ubiquitous nature in the environment but also in foodstuff and consumer packaged goods has revealed potential threats to humans who can be contaminated mainly through air, food and water consumption. In this review, the current literature on human exposure to MPs is summarized with a focus on the gastrointestinal tract as portal of entry. Then, we discuss the vector effect of MPs, in their pristine versus weathered forms, with well-known contaminants as heavy metals and chemicals, or more emerging ones as antibiotics or microbial pathogens, like Pseudomonas spp., Vibrio spp., Campylobacter spp. and Escherichia coli. Comprehensive knowledge on MP fate in the gastrointestinal tract and their potential impact on gut homeostasis disruption, including gut microbiota, mucus and epithelial barrier, is reported in vitro and in vivo in mammals. Special emphasis is given on the crucial need of developing robust in vitro gut models to adequately simulate human digestive physiology and absorption processes. Finally, this review points out future research directions on MPs in human intestinal health.


Subject(s)
Gastrointestinal Microbiome , Metals, Heavy , Water Pollutants, Chemical , Animals , Humans , Microplastics , Plastics/toxicity , Water Pollutants, Chemical/analysis
8.
J Hazard Mater ; 405: 124591, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33301968

ABSTRACT

Plastic pollution is a growing problem, not at least in areas where poor waste management results in direct pollution of coastal zones, such as South Asia and regions in Africa. In addition to the effect on ecosystems and their related services, plastic pollution may also affect human health indirectly as vectors for infectious disease. As plastic offers a suitable surface for the attachment of biofilm forming bacteria, it may contribute to disease outbreaks and antimicrobial resistance. To investigate the role of plastic litter as potential vectors for pathogenic bacteria, we collected plastic litter from four rural sites in Zanzibar, and isolated adhered bacteria. Isolates were short-read sequenced for further molecular analysis. This revealed that collected plastic litter was associated with diverse bacterial species, including human pathogens Citrobacter freundii, Klebsiella pneumoniae and Vibrio cholerae. Furthermore, most isolates were found to be multidrug resistant. Our findings confirm that plastic litter, serve as novel reservoir for human multidrug resistant pathogenic bacteria that combined with poor sanitation and waste handling, may lead to transmission of infectious diseases and antimicrobial resistance. These findings add a new level to the environmental challenges with plastic pollution; the potential health risk associated with exposure to plastic litter.


Subject(s)
Ecosystem , Plastics , Drug Resistance, Multiple, Bacterial/genetics , Humans , Klebsiella pneumoniae/genetics , Plastics/toxicity , Tanzania
9.
Res Microbiol ; 171(3-4): 143-152, 2020.
Article in English | MEDLINE | ID: mdl-31991172

ABSTRACT

Polyamines are small cationic amines required for modulating multiple cell process, including cell growth and DNA and RNA stability. In Salmonella polyamines are primarily synthesized from L-arginine or L-ornithine. Based on a previous study, which demonstrated that polyamines affect the expression of virulence gene in S. Typhimurium, we investigated the role of polyamines in the global gene and protein expression in S. Typhimurium. The depletion of polyamine biosynthesis led to down-regulation of genes encoding structural components of the Type Three Secretion system 1 (TTSS1) and its secreted effectors. Interestingly, Expression of HilA, which is the master regulator of Salmonella Pathogenicity Island 1 (SPI1), was only reduced at the post-transcriptional in the polyamine mutant. Enzymes related to biosynthesis and/or transport of several amino acids were up-regulated, just as the Mg2+-transport systems were three to six-fold up-regulated at both the transcriptional and protein levels. Furthermore, in the polyamine depletion mutant, proteins related to stress response (IbpA, Dps, SodB), were 2-5 fold up-regulated. Together our data provide strong evidence that polyamine depletion affects expression of proteins linked with virulence and stress response of S. Typhimurium. Furthermore, polyamines positively affected translation of HilA, the major regulator of SPI1.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Polyamines/metabolism , Protein Biosynthesis , Salmonella typhimurium/physiology , Stress, Physiological , Trans-Activators/genetics , Mutation , Proteomics/methods , Salmonella Infections/microbiology , Virulence/genetics , Virulence Factors/genetics
10.
J Antimicrob Chemother ; 74(11): 3179-3183, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31411684

ABSTRACT

BACKGROUND: bla TEM-1 encodes a narrow-spectrum ß-lactamase that is inhibited by ß-lactamase inhibitors and commonly present in Escherichia coli. Hyperproduction of blaTEM-1 may cause resistance to penicillin/ß-lactamase inhibitor (P/BLI) combinations. OBJECTIVES: To characterize EC78, an E. coli bloodstream isolate, resistant to P/BLI combinations, which contains extensive amplification of blaTEM-1 within the chromosome. METHODS: EC78 was sequenced using Illumina and Oxford Nanopore Technology (ONT) methodology. Configuration of blaTEM-1 amplification was probed using PCR. Expression of blaTEM-1 mRNA was determined using quantitative PCR and ß-lactamase activity was determined spectrophotometrically in a nitrocefin conversion assay. Growth rate was assessed to determine fitness and stability of the gene amplification was assessed by passage in the absence of antibiotics. RESULTS: Illumina sequencing of EC78 identified blaTEM-1B as the only acquired ß-lactamase preceded by the WT P3 promoter and present at a copy number of 182.6 with blaTEM-1B bracketed by IS26 elements. The chromosomal location of the IS26-blaTEM-1B amplification was confirmed by ONT sequencing. Hyperproduction of blaTEM-1 was confirmed by increased transcription of blaTEM-1 and ß-lactamase activity and associated with a significant fitness cost; however, the array was maintained at a relatively high copy number for 150 generations. PCR screening for blaTEM amplification of isolates resistant to P/BLI combinations identified an additional strain containing an IS26-associated amplification of a blaTEM gene. CONCLUSIONS: IS26-associated amplification of blaTEM can cause resistance to P/BLI combinations. This adaptive mechanism of resistance may be overlooked if simple methods of genotypic prediction (e.g. gene presence/absence) are used to predict antimicrobial susceptibility from sequencing data.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Piperacillin, Tazobactam Drug Combination/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Escherichia coli/enzymology , Humans , Microbial Sensitivity Tests , Sequence Analysis, DNA
11.
Vet Microbiol ; 230: 23-31, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30827393

ABSTRACT

Salmonella Pathogenicity Islands 19 (SPI19) encodes a type VI secretion system (T6SS). SPI19 is only present in few serovars of S. enterica, including the host-adapted serovar S. Dublin and the host-specific serovar S. Gallinarum. The role of the SPI19 encoded T6SS in virulence in these serovar is not fully understood. Here we show that during infection of mice, a SPI19/T6SS deleted strain of S. Dublin 2229 was less virulent than the wild type strain after oral challenge, but not after IP challenge. The mutant strain also competed significantly poorer than the wild type strain when co-cultured with strains of E. coli, suggesting that this T6SS plays a role in pathogenicity by killing competing bacteria in the intestine. No significant difference was found between wild type S. Gallinarum G9 and its ΔSPI19/T6SS mutant in infection, whether chicken were challenged orally or by the IP route, and the S. Gallinarum G9 ΔSPI19/T6SS strain competed equally well as the wild type strain against strains of E. coli. However, contrary to what was observed with S. Dublin, the wild type G9 strains was significantly more cytotoxic to monocyte derived primary macrophages from hens than the mutant, suggesting that SPI19/T6SS in S. Gallinarum mediates killing of eukaryotic cells. The lack of significant importance of SPI19/T6SS after oral and systemic challenge of chicken was confirmed by knocking out SPI19 in a second strain, J91. Together the results suggest that the T6SS encoded from SPI19 have different roles in the two serovars and that it is a virulence-factor after oral challenge of mice in S. Dublin, while we cannot confirm previous results that SPI19/T6SS influence virulence significantly in S. Gallinarum.


Subject(s)
Macrophages/microbiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/genetics , Type VI Secretion Systems/genetics , Animals , Chickens , Escherichia coli/physiology , Female , Genomic Islands/genetics , Mice , Mice, Inbred C57BL , Mutation , Poultry Diseases/microbiology , Salmonella enterica/pathogenicity , Serogroup , Virulence Factors/genetics
12.
BMC Microbiol ; 18(1): 226, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30587122

ABSTRACT

BACKGROUND: Avian pathogenic Escherichia coli (APEC) is the infectious agent of a wide variety of avian diseases, which causes substantial economic losses to the poultry industry worldwide. Polyamines contribute to the optimal synthesis of nucleic acids and proteins in bacteria. The objectives of this study were to investigate; i) whether APEC E. coli encodes the same systems for biosynthesis and uptake as described for E. coli K12 and ii) the role of polyamines during in vitro growth of an avian pathogenic E. coli strain (WT-ST117- O83:H4T). RESULTS: Following whole genome sequencing, polyamine biosynthesis and export genes present in E. coli MG1655 (K-12) were found to be identical in WT-ST117. Defined mutants were constructed in putrescine and spermidine biosynthesis pathways (ΔspeB, ΔspeC, ΔspeF, ΔspeB/C and ΔspeD/E), and in polyamines transport systems (ΔpotE, ΔyeeF, ΔpotABCD and ΔpotFGHI). Contrary to what was observed for MG1655, the ΔpotE-ST117 mutant was growth attenuated, regardless of putrescine supplementation. The addition of spermidine or orthinine restored the growth to the level of WT-ST117. Growth attenuation after induction of membrane stress by SDS suggested that PotE is involved in protection against this stress. The ΔspeB/C-ST117 mutant was also growth attenuated in minimal medium. The addition of putrescine or spermidine to the media restored growth rate to the wild type level. The remaining biosynthesis and transport mutants showed a growth similar to that of WT-ST117. Analysis by Ultra-High Performance Liquid Chromatography revealed that the ΔspeB/C mutant was putrescine-deficient, despite that the gene speF, which is also involved in the synthesis of putrescine, was expressed. CONCLUSIONS: Deletion of the putrescine transport system, PotE, or the putrescine biosynthesis pathway genes speB/C affected in vitro growth of APEC (ST117- O83:H4) strain, but not E. coli MG1655, despite the high similarity of the genetic make-up of biosynthesis and transport genes. Therefore, blocking these metabolic reactions may be a suitable way to prevent APEC growth in the host without disturbing the commensal E. coli population.


Subject(s)
Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Poultry Diseases/microbiology , Putrescine/biosynthesis , Animals , Biological Transport , Biosynthetic Pathways , Chickens , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism
13.
Microb Pathog ; 95: 117-123, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27041598

ABSTRACT

Polyamines (putrescine and spermidine) are small-cationic amines ubiquitous in nature and present in most living cells. In recent years they have been linked to virulence of several human pathogens including Shigella spp and Salmonella enterica serovar Typhimurium (S. Typhimurium). Central to S. Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric oxide production, we find that polyamines are required for systemic infections independently of host-produced reactive nitrogen species. To distinguish between the physiological roles of putrescine and spermidine, we constructed a strain deficient for spermidine biosynthesis and uptake, but with retained ability to produce and import putrescine. Interestingly, in this mutant we observe a strong attenuation of virulence during infection of mice proficient and deficient for nitric oxide production suggesting that spermidine, specifically, is essential for virulence of S. Typhimurium.


Subject(s)
Microbial Viability , Putrescine/metabolism , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Salmonella typhimurium/pathogenicity , Spermidine/metabolism , Stress, Physiological , Animals , Bacteremia/microbiology , Cell Line , Macrophages/microbiology , Mice, Inbred C57BL , Virulence
14.
Infect Immun ; 84(7): 2076-2085, 2016 07.
Article in English | MEDLINE | ID: mdl-27113361

ABSTRACT

Metabolic enzymes show a high degree of redundancy, and for that reason they are generally ignored in searches for novel targets for anti-infective substances. The enzymes PurN and PurT are redundant in vitro in Salmonella enterica serovar Typhimurium, in which they perform the third step of purine synthesis. Surprisingly, the results of the current study demonstrated that single-gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection indexes [CI] of <0.03) in mouse infections. While the ΔpurT mutant multiplied as fast as the wild-type strain in cultured J774A.1 macrophages, net multiplication of the ΔpurN mutant was reduced approximately 50% in 20 h. The attenuation of the ΔpurT mutant was abolished by simultaneous removal of the enzyme PurU, responsible for the formation of formate, indicating that the attenuation was related to formate accumulation or wasteful consumption of formyl tetrahydrofolate by PurU. In the process of further characterization, we disclosed that the glycine cleavage system (GCV) was the most important for formation of C1 units in vivo (CI = 0.03 ± 0.03). In contrast, GlyA was the only important enzyme for the formation of C1 units in vitro The results with the ΔgcvT mutant further revealed that formation of serine by SerA and further conversion of serine into C1 units and glycine by GlyA were not sufficient to ensure C1 formation in S Typhimurium in vivo The results of the present study call for reinvestigations of the concept of metabolic redundancy in S Typhimurium in vivo.


Subject(s)
Bacterial Proteins/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/physiology , Amino Acids/metabolism , Animals , Bacterial Proteins/genetics , Carbon/metabolism , Female , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Microbial Viability , Mutation , Virulence/genetics
15.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-27092245

ABSTRACT

Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.

16.
BMC Microbiol ; 16: 30, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26955808

ABSTRACT

BACKGROUND: Typhoid fever caused by Salmonella enterica serovar Typhi (S. Typhi) is a severe systemic human disease and endemic in regions of the world with poor drinking water quality and sewage treatment facilities. A significant number of patients become asymptomatic life-long carriers of S. Typhi and serve as the reservoir for the disease. The specific mechanisms and adaptive strategies enabling S. Typhi to survive inside the host for extended periods are incompletely understood. Yet, elucidation of these processes is of major importance for improvement of therapeutic strategies. In the current study genetic adaptation during experimental chronic S. Typhimurium infections of mice, an established model of chronic typhoid fever, was probed as an approach for studying the molecular mechanisms of host-adaptation during long-term host-association. RESULTS: Individually sequence-tagged wild type strains of S. Typhimurium 4/74 were used to establish chronic infections of 129X1/SvJ mice. Over the course of infections, S. Typhimurium bacteria were isolated from feces and from livers and spleens upon termination of the experiment. In all samples dominant clones were identified and select clones were subjected to whole genome sequencing. Dominant clones isolated from either systemic organs or fecal samples exhibited distinct single nucleotide polymorphisms (SNPs). One mouse appeared to have distinct adapted clones in the spleen and liver, respectively. Three mice were colonized in the intestines by the same clone containing the same non-synonymous SNP in a transcriptional regulator, kdgR, of metabolic genes. This likely indicates transmission of this clone between mice. The mutation was tracked to have occurred prior to 2 weeks post infection in one of the three mice and had subsequently been transmitted to the other two mice. Re-infection with this clone confirmed that it is superior to the wild type for intestinal colonization. CONCLUSIONS: During 4 to 6 weeks of chronic infections, S. Typhimurium acquired distinct SNPs in known regulators of metabolic and virulence genes. One SNP, the kdgR-SNP was confirmed to confer selective advantage during chronic infections and constitute a true patho-adaptive mutation. Together, the results provide evidence for rapid genetic adaptation to the host of S. Typhimurium and validate experimental evolution in the context of host infection as a strategy for elucidating pathogen host interactions at the molecular level.


Subject(s)
Bacterial Proteins/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Animals , Bacterial Proteins/metabolism , Female , Host-Pathogen Interactions , Humans , Intestines/microbiology , Mice , Mutation , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/physiology , Virulence
17.
Int J Food Microbiol ; 224: 40-6, 2016 May 02.
Article in English | MEDLINE | ID: mdl-26945769

ABSTRACT

Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids.


Subject(s)
Amino Acids/genetics , Eggs/microbiology , Gene Expression Regulation, Bacterial , Salmonella enteritidis/growth & development , Salmonella enteritidis/genetics , Animals , Chickens/microbiology , Gene Expression Profiling , Genes, Bacterial/genetics
18.
J Antimicrob Chemother ; 70(1): 62-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25182062

ABSTRACT

OBJECTIVES: Knowledge about the regulatory mechanisms of CTX-M ß-lactamase-encoding genes in Escherichia coli is limited. The objectives of this study were to determine the growth response of CTX-M-1-producing E. coli exposed to cefotaxime and to investigate how blaCTX-M-1 expression at mRNA and protein levels is influenced by cefotaxime concentration, growth phase and gene location (chromosome versus plasmid). METHODS: Two isogenic E. coli strains, MG1655/CTX-M-1 and MG1655/IncI1/CTX-M-1, containing blaCTX-M-1 on the chromosome and on a wild-type IncI1 plasmid, respectively, were constructed and the MIC of cefotaxime was determined. Growth of the two strains was studied in the presence of increasing concentrations of cefotaxime ranging from 0 to 512 mg/L. The levels of mRNA and protein in different growth phases and at different cefotaxime concentrations were studied by qPCR and selected-reaction-monitoring MS, respectively. RESULTS: The MICs of cefotaxime were 168 and 252 mg/L for MG1655/CTX-M-1 and MG1655/IncI1/CTX-M-1, respectively. Both strains displayed a prolonged lag phase when exposed to cefotaxime. The mRNA of blaCTX-M-1 and CTX-M-1 protein levels increased in the presence of high cefotaxime concentrations and varied with growth phase. Higher mRNA expression levels were detected for MG1655/CTX-M-1 compared with MG1655/IncI1/CTX-M-1, but a higher protein level was found for MG1655/IncI1/CTX-M-1 compared with MG1655/CTX-M-1, the latter corresponding well with the higher MIC for this strain. CONCLUSIONS: blaCTX-M-1 mRNA expression and CTX-M-1 protein levels were dependent on cefotaxime concentration, growth phase and gene location. These results provide insight into the expression of cephalosporin resistance in CTX-M-1-producing E. coli, improving our understanding of the relationship between antimicrobial therapy and the expression of resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Escherichia coli/drug effects , Escherichia coli/enzymology , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , beta-Lactamases/biosynthesis , Chromosomes, Bacterial , Escherichia coli/genetics , Gene Expression Profiling , Genes, Bacterial , Mass Spectrometry , Microbial Sensitivity Tests , Plasmids , Real-Time Polymerase Chain Reaction
19.
PLoS One ; 9(7): e101869, 2014.
Article in English | MEDLINE | ID: mdl-24992475

ABSTRACT

Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut sets) predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB) demonstrated redundancy in vitro and in vivo and showed that asparagine is essential for S. Typhimurium during infection. trpB/trpA as well as single mutants were attenuated for growth in vitro, while only the double mutant was a cut set in vivo, underlining previous observations that tryptophan is essential for successful outcome of infection. speB/speF,speC was not affected in vitro but was attenuated during infection showing that polyamines are essential for virulence apparently in a growth independent manner. The serA/glyA cut-set was found to be growth attenuated as predicted by the model. However, not only the double mutant, but also the glyA mutant, were found to be attenuated for virulence. This adds glycine production or conversion of glycine to THF to the list of essential reactions during infection. One pair (thrC/kbl) showed true redundancy in vitro but not in vivo demonstrating that threonine is available to the bacterium during infection. These data add to the existing knowledge of available nutrients in the intra-host environment, and have identified possible new targets for antibiotics.


Subject(s)
Bacterial Proteins/genetics , Metabolic Networks and Pathways , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Virulence Factors/genetics , Animals , Asparagine/metabolism , Bacterial Proteins/metabolism , Computer Simulation , Female , Genetic Fitness , Humans , Mice , Mice, Inbred C57BL , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Tryptophan/metabolism , Virulence Factors/metabolism
20.
Microbiology (Reading) ; 160(Pt 6): 1252-1266, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24777662

ABSTRACT

Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth.


Subject(s)
Metabolic Networks and Pathways/genetics , Salmonella typhimurium/genetics , Anti-Bacterial Agents/pharmacology , Biomass , Computer Simulation , Culture Media/chemistry , Gene Knockout Techniques , Genomics , Glucose/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL