Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Inorg Chem ; 24(3): 433-435, 2019 May.
Article in English | MEDLINE | ID: mdl-30911842

ABSTRACT

In the original article there were errors in the methods section. Thus, within Table 1: (i) the primer sequence pair for SOD-2 was incorrectly cited; (ii) the primer sequence pair used for SOD 1 was incorrect and did not target the gene of interest. Additional experiments were performed with correctly designed SOD1 primer pair and the outcomes documented here.

2.
J Biol Inorg Chem ; 19(6): 813-28, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24535002

ABSTRACT

Selenite may exert its cytotoxic effects against cancer cells via the generation of reactive oxygen species (ROS). We investigated sources of, and the cellular response to, superoxide radical anion (O2 (·-)) generated in human A549 lung cancer cells after treatment with selenite. A temporal delay was observed between selenite treatment and increases in O2 (·-) production and biomarkers of apoptosis/necrosis, indicating that the reduction of selenite by the glutathione reductase/NADPH system (yielding O2 (·-)) is a minor contributor to ROS production under these conditions. By contrast, mitochondrial and NADPH oxidase O2 (·-) generation were the major contributors. Treatment with a ROS scavenger [poly(ethylene glycol)-conjugated superoxide dismutase (SOD) or sodium 4,5-dihydroxybenzene-1,3-disulfonate] 20 h after the initial selenite treatment inhibited both ROS generation and apoptosis determined at 24 h. In addition, SOD1 was selectively upregulated and its perinuclear cytoplasmic distribution was colocalised with the cellular distribution of selenium. Interestingly, messenger RNA for manganese superoxide dismutase, catalase, inducible haem oxygenase 1 and glutathione peroxidase either remained unchanged or showed a delayed response to selenite treatment. Colocalisation of Cu and Se in these cells (Weekley et al. in J. Am. Chem. Soc. 133:18272-18279, 2011) potentially results from the formation of a Cu-Se species, as indicated by Cu K-edge extended X-ray absorption fine structure spectra. Overall, SOD1 is upregulated in response to selenite-mediated ROS generation, and this likely leads to an accumulation of toxic hydrogen peroxide that is temporally related to decreased cancer cell viability. Increased expression of SOD1 gene/protein coupled with formation of a Cu-Se species may explain the colocalisation of Cu and Se observed in these cells.


Subject(s)
Apoptosis/drug effects , Copper/chemistry , Selenious Acid/pharmacology , Selenium/chemistry , Superoxide Dismutase/metabolism , Superoxides/metabolism , Anions/metabolism , Cell Survival/drug effects , Copper/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Humans , Selenious Acid/chemistry , Selenious Acid/metabolism , Selenium/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL