Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Heart Rhythm ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971417

ABSTRACT

BACKGROUND: Idiopathic epicardial premature ventricular contractions (PVCs) originating from the left ventricular summit are difficult to eliminate. OBJECTIVE: To describe feasibility and procedural safety of focal monopolar biphasic pulsed field ablation (F-PFA) from within the great cardiac vein (GCV) for the treatment of idiopathic epicardial PVCs. METHODS: In 4 pigs, F-PFA (CENTAURI, Cardiofocus) was applied from within the GCV followed by macroscopic gross analysis. In 4 patients with previously failed radiofrequency ablation, electroanatomic mapping was used to guide F-PFA from within the GCV and the ventricular outflow tracts. Coronary angiography and optical coherence tomography (OCT) were performed in 2 patients. RESULTS: In pigs, F-PFA from within the GCV (5mm away from the coronary arteries) resulted in myocardial lesions with a maximal depth of 4mm which was associated with non-obstructive transient coronary spasms. In patients, sequential delivery of F-PFA in the ventricular outflow tracts and from within the GCV eliminated the PVCs. During F-PFA delivery from within the GCV with prophylactic nitroglycerin application, coronary angiography showed no coronary spasm when F-PFA was delivered >5mm away from the coronary artery and a transient coronary spasm without changes in a subsequent OCT, when F-PFA was delivered directly on the coronary artery. Intracardiac echo and computer tomography integration was used to monitor F-PFA delivery from within the GCV. There were no immediate or short-term complications. CONCLUSION: Sequential mapping-guided F-PFA from endocardial ventricular outflow tracts and from within the GCV is feasible with a favourable procedural safety profile for the treatment of epicardial PVC.

2.
Br J Pharmacol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877789

ABSTRACT

Inflammatory signalling via the nod-like receptor (NLR) family pyrin domain-containing protein-3 (NLRP3) inflammasome has recently been implicated in the pathophysiology of atrial fibrillation (AF). However, the precise role of the NLRP3 inflammasome in various cardiac cell types is poorly understood. Targeting components or products of the inflammasome and preventing their proinflammatory consequences may constitute novel therapeutic treatment strategies for AF. In this review, we summarise the current understanding of the role of the inflammasome in AF pathogenesis. We first review the NLRP3 inflammasome pathway and inflammatory signalling in cardiomyocytes, (myo)fibroblasts and immune cells, such as neutrophils, macrophages and monocytes. Because numerous compounds targeting NLRP3 signalling are currently in preclinical development, or undergoing clinical evaluation for other indications than AF, we subsequently review known therapeutics, such as colchicine and canakinumab, targeting the NLRP3 inflammasome and evaluate their potential for treating AF.

3.
Cardiovasc Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832935

ABSTRACT

AIMS: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS: We employed a large animal model, the female landrace pig, and used multiple in-vivo and ex-vivo approaches including pharmacological challenges, electrophysiology and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta or combined alpha-beta blockade), ganglionic blockade (hexamethonium) nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing (snRNAseq) showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION: GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signaling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pace making. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in GLP-1 RA recipients.

4.
Europace ; 26(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38758963

ABSTRACT

AIMS: Pulmonary vein isolation (PVI) is the corner stone of modern rhythm control strategies in patients with atrial fibrillation (AF). Sleep-disordered breathing (SDB) is prevalent in more than 50% of patients undergoing AF ablation, and studies have indicated a greater recurrence rate after PVI in patients with SDB. Herein, we study the effect of catheter-based PVI on AF in a pig model for SDB. METHODS AND RESULTS: In 11 sedated spontaneously breathing pigs, obstructive apnoeas were simulated by 75 s of intermittent negative upper airway pressure (INAP) applied by a negative pressure device connected to the endotracheal tube. Intermittent negative upper airway pressures were performed before and after PVI. AF-inducibility and atrial effective refractory periods (aERPs) were determined before and during INAP by programmed atrial stimulation. Pulmonary vein isolation prolonged the aERP by 48 ± 27 ms in the right atrium (RA) (P < 0.0001) and by 40 ± 34 ms in the left atrium (LA) (P = 0.0004). Following PVI, AF-inducibility dropped from 28 ± 26% to 0% (P = 0.0009). Intermittent negative upper airway pressure was associated with a transient aERP-shortening (ΔaERP) in both atria, which was not prevented by PVI (INAP indued ΔaERP after PVI in the RA: -57 ± 34 ms, P = 0.0002; in the LA: -42 ± 24 ms, P < 0.0001). Intermittent negative upper airway pressure was associated with a transient increase in AF-inducibility (from 28 ± 26% to 69 ± 21%; P = 0.0008), which was not attenuated by PVI [INAP-associated AF-inducibility after PVI: 58 ± 33% (P = 0.5)]. CONCLUSION: Transient atrial arrhythmogenic changes related to acute obstructive respiratory events are not prevented by electrical isolation of the pulmonary veins, which partially explains the increased AF recurrence in patients with SDB after PVI procedures.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Disease Models, Animal , Pulmonary Veins , Animals , Pulmonary Veins/surgery , Pulmonary Veins/physiopathology , Atrial Fibrillation/physiopathology , Atrial Fibrillation/surgery , Atrial Fibrillation/prevention & control , Atrial Fibrillation/diagnosis , Swine , Catheter Ablation/methods , Sleep Apnea, Obstructive/physiopathology , Treatment Failure , Heart Rate , Heart Atria/physiopathology , Heart Atria/surgery
5.
Nano Lett ; 24(22): 6553-6559, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775731

ABSTRACT

New approaches such as selective area growth (SAG), where crystal growth is lithographically controlled, allow the integration of bottom-up grown semiconductor nanomaterials in large-scale classical and quantum nanoelectronics. This calls for assessment and optimization of the reproducibility between individual components. We quantify the structural and electronic statistical reproducibility within large arrays of nominally identical selective area growth InAs nanowires. The distribution of structural parameters is acquired through comprehensive atomic force microscopy studies and transmission electron microscopy. These are compared to the statistical distributions of the cryogenic electrical properties of 256 individual SAG nanowire field effect transistors addressed using cryogenic multiplexer circuits. Correlating measurements between successive thermal cycles allows distinguishing between the contributions of surface impurity scattering and fixed structural properties to device reproducibility. The results confirm the potential of SAG nanomaterials, and the methodologies for quantifying statistical metrics are essential for further optimization of reproducibility.

6.
Small ; : e2310782, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38431927

ABSTRACT

Freestanding oxide membranes provide a promising path for integrating devices on silicon and flexible platforms. To ensure optimal device performance, these membranes must be of high crystal quality, stoichiometric, and their morphology free from cracks and wrinkles. Often, layers transferred on substrates show wrinkles and cracks due to a lattice relaxation from an epitaxial mismatch. Doping the sacrificial layer of Sr3 Al2 O6 (SAO) with Ca or Ba offers a promising solution to overcome these challenges, yet its effects remain critically underexplored. A systematic study of doping Ca into SAO is presented, optimizing the pulsed laser deposition (PLD) conditions, and adjusting the supporting polymer type and thickness, demonstrating that strain engineering can effectively eliminate these imperfections. Using SrTiO3 as a case study, it is found that Ca1.5 Sr1.5 Al2 O6 offers a near-perfect match and a defect-free freestanding membrane. This approach, using the water-soluble Bax /Cax Sr3-x Al2 O6 family, paves the way for producing high-quality, large freestanding membranes for functional oxide devices.

7.
Heart Rhythm ; 21(5): 622-629, 2024 May.
Article in English | MEDLINE | ID: mdl-38280622

ABSTRACT

BACKGROUND: More than 50% of patients with atrial fibrillation (AF) suffer from sleep disordered breathing (SDB). Obstructive respiratory events contribute to a transient, vagally mediated atrial arrhythmogenic substrate, which is resistant to most available antiarrhythmic drugs. OBJECTIVE: The purpose of this study was to investigate the effect of pharmacologic inhibition of the G-protein-gated acetylcholine-regulated potassium current (IK,ACh) with and without acute autonomic nervous system activation by nicotine in a pig model for obstructive respiratory events. METHODS: In 21 pigs, SDB was simulated by applying an intermittent negative upper airway pressure (INAP). AF inducibility and atrial effective refractory periods (aERPs) were determined before and during INAP by an S1S2 atrial pacing-protocol. Pigs were randomized into 3 groups-group 1: vehicle (n = 4); group 2: XAF-1407 (IK,ACh inhibitor) (n = 7); and group 3: nicotine followed by XAF-1407 (n = 10). RESULTS: In group 1, INAP shortened aERP (ΔaERP -42.6 ms; P = .004) and transiently increased AF inducibility from 0% to 31%. In group 2, XAF-1407 prolonged aERP by 25.2 ms (P = .005) during normal breathing and prevented INAP-induced aERP shortening (ΔaERP -3.6 ms; P = .3) and AF inducibility. In group 3, INAP transiently shortened aERP during nicotine perfusion (ΔaERP -33.6 ms; P = .004) and increased AF inducibility up to 61%, which both were prevented by XAF-1407. CONCLUSION: Simulated obstructive respiratory events transiently shorten aERP and increase AF inducibility, which can be prevented by the IK,ACh-inhibitor XAF-1407. XAF-1407 also prevents these arrhythmogenic changes induced by obstructive respiratory events during nicotine perfusion. Whether IK,ACh channels represent a target for SDB-related AF in humans warrants further study.


Subject(s)
Atrial Fibrillation , Disease Models, Animal , Animals , Swine , Atrial Fibrillation/physiopathology , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Heart Atria/physiopathology , Heart Atria/drug effects , Heart Atria/metabolism , Acetylcholine/pharmacology , Nicotine/pharmacology , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/complications
8.
Nat Commun ; 14(1): 7738, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007553

ABSTRACT

Bottom-up grown nanomaterials play an integral role in the development of quantum technologies but are often challenging to characterise on large scales. Here, we harness selective area growth of semiconductor nanowires to demonstrate large-scale integrated circuits and characterisation of large numbers of quantum devices. The circuit consisted of 512 quantum devices embedded within multiplexer/demultiplexer pairs, incorporating thousands of interconnected selective area growth nanowires operating under deep cryogenic conditions. Multiplexers enable a range of new strategies in quantum device research and scaling by increasing the device count while limiting the number of connections between room-temperature control electronics and the cryogenic samples. As an example of this potential we perform a statistical characterization of large arrays of identical quantum dots thus establishing the feasibility of applying cross-bar gating strategies for efficient scaling of future selective area growth quantum circuits. More broadly, the ability to systematically characterise large numbers of devices provides new levels of statistical certainty to materials/device development.

9.
Front Cardiovasc Med ; 10: 1102164, 2023.
Article in English | MEDLINE | ID: mdl-38034369

ABSTRACT

Background: Second-degree atrioventricular (AV) block at rest is very common in horses. The underlying molecular mechanisms are unexplored, but commonly attributed to high vagal tone. Aim: To assess whether AV block in horses is due to altered expression of the effectors of vagal signalling in the AV node, with specific emphasis on the muscarinic acetylcholine receptor (M2) and the G protein-gated inwardly rectifying K+ (GIRK4) channel that mediates the cardiac IK,ACh current. Method: Eighteen horses with a low burden of second-degree AV block (median 8 block per 20 h, IQR: 32 per 20 h) were assigned to the control group, while 17 horses with a high burden of second-degree AV block (median: 408 block per 20 h, IQR: 1,436 per 20 h) were assigned to the AV block group. Radiotelemetry ECG recordings were performed to assess PR interval and incidence of second-degree AV block episodes at baseline and on pharmacological blockade of the autonomic nervous system (ANS). Wenckebach cycle length was measured by intracardiac pacing (n = 16). Furthermore, the expression levels of the M2 receptor and the GIRK4 subunit of the IKACh channel were quantified in biopsies from the right atrium, the AV node and right ventricle using immunohistochemistry and machine learning-based automated segmentation analysis (n = 9 + 9). Results: The AV block group had a significantly longer PR interval (mean ± SD, 0.40 ± 0.05 s; p < 0.001) and a longer Wenckebach cycle length (mean ± SD, 995 ± 86 ms; p = 0.007) at baseline. After blocking the ANS, all second-degree AV block episodes were abolished, and the difference in PR interval disappered (p = 0.80). The AV block group had significantly higher expression of the M2 receptor (p = 0.02), but not the GIRK4 (p = 0.25) in the AV node compared to the control group. Both M2 and GIRK4 were highly expressed in the AV node and less expressed in the atria and the ventricles. Conclusion: Here, we demonstrate the involvement of the m2R-IK,ACh pathway in underlying second-degree AV block in horses. The high expression level of the M2 receptor may be responsible for the high burden of second-degree AV blocks seen in some horses.

10.
ACS Nano ; 17(12): 11794-11804, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37317984

ABSTRACT

Hybrid semiconductor-superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α-Sn or superconducting ß-Sn. For InAs nanowires, we observe phase-pure superconducting ß-Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α-Sn phase evolves into a polycrystalline shell of coexisting α and ß phases, where the ß/α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the ß-Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.

11.
Echocardiography ; 40(7): 695-702, 2023 07.
Article in English | MEDLINE | ID: mdl-37335308

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia following coronary artery bypass grafting (CABG). We hypothesized that measures of left atrial (LA) function would be useful in predicting AF in patients undergoing CABG. METHODS AND RESULTS: In the study, 611 patients were included after CABG. All patients had echocardiograms performed preoperatively and LA functional measurements were assessed. These measurements were LA maximum volume index (LAVmax), LA minimum volume index (LAVmin) and LA emptying fraction (LAEF). The endpoint was AF occurring >14 days after surgery. During the follow-up period of a median of 3.7 years, 52 (9%) developed AF. The mean age was 67 years, 84% were male and the average left ventricle ejection fraction was 50%. Patients who developed AF had a lower CCS class and lower LAEF (40 vs. 45%), otherwise no clinical differences were observed between outcome groups. No functional LA measurements were significant predictors of AF in the whole CABG population. However, in patients with normal-sized LA (n = 532, events: 49), both LAEF and LAVmin were univariable predictors of AF. When the functional measurements were adjusted for the CHADS2 score, both LAVmin (HR = 1.07 [1.01-1.13], p = .014) and LAEF (HR: 1.02 [1.00-1.03], p = .023), remained significant predictors. CONCLUSION: No echocardiographic measurements were significant predictors of AF after CABG. In patients with a normal LA size, LAVmin as well as LAEF were significant predictors of AF.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Humans , Male , Aged , Female , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Atrial Fibrillation/epidemiology , Risk Factors , Heart Atria , Coronary Artery Bypass/adverse effects
12.
Epigenetics ; 18(1): 2199374, 2023 12.
Article in English | MEDLINE | ID: mdl-37032646

ABSTRACT

Profiling of circulating cell-free DNA (cfDNA) by tissue-specific base modifications, such as 5-methylcytosines (5mC), may enable the monitoring of ongoing pathophysiological processes. Nanopore sequencing allows genome-wide 5mC detection in cfDNA without bisulphite conversion. The aims of this study were: i) to find differentially methylated regions (DMRs) of cfDNA associated with obesity in Göttingen minipigs using Nanopore sequencing, ii) to validate a subset of the DMRs using methylation-specific PCR (MSP-PCR), and iii) to compare the cfDNA DMRs with those from whole blood genomic DNA (gDNA). Serum cfDNA and gDNA were obtained from 10 lean and 7 obese Göttingen Minipigs both with experimentally induced myocardial infarction and sequenced using Oxford Nanopore MinION. A total of 1,236 cfDNA DMRs (FDR<0.01) were associated with obesity. In silico analysis showed enrichment of the adipocytokine signalling, glucagon signalling, and cellular glucose homoeostasis pathways. A strong cfDNA DMR was discovered in PPARGC1B, a gene linked to obesity and type 2 diabetes. The DMR was validated using MSP-PCR and correlated significantly with body weight (P < 0.05). No DMRs intersected between cfDNA and gDNA, suggesting that cfDNA originates from body-wide shedding of DNA. In conclusion, nanopore sequencing detected differential methylation in minute quantities (0.1-1 ng/µl) of cfDNA. Future work should focus on translation into human and comparing 5mC from somatic tissues to pinpoint the exact location of pathology.


Oxford nanopore sequencing can reveal changes in methylation patterns associated with obesity in minute quantities of cell-free DNA from serum.Bisulphite conversion and methylation-specific PCR can be used to validate differentially methylated regions in cell-free DNA.A differentially methylated region in an intronic region of the PPARGC1B gene was found associated with obesity.Differentially methylated regions in cell-free DNA could be useful as early risk markers of certain diseases and pathologies.


Subject(s)
Cell-Free Nucleic Acids , Diabetes Mellitus, Type 2 , Nanopore Sequencing , Humans , Swine , Animals , DNA Methylation , Swine, Miniature/genetics , Diabetes Mellitus, Type 2/genetics , DNA , Cell-Free Nucleic Acids/genetics , Obesity/genetics , RNA-Binding Proteins/genetics
13.
J Cardiovasc Transl Res ; 16(5): 1205-1219, 2023 10.
Article in English | MEDLINE | ID: mdl-37014465

ABSTRACT

Atrial fibrillation (AF) is more prevalent in athletes, and currently, the mechanisms are not fully understood. Atrial fibrillation inducibility and stability was investigated in trained and untrained Standardbred racehorses. The horses underwent echocardiography for evaluation of atrial size. High-density mapping during AF was performed, and the presence of structural remodeling, as well as the expression of inflammatory and pro-inflammatory markers in the atria, was studied. Atrial fibrillation sustained significantly longer after tachypacing in the trained horses, whereas no difference in AF inducibility was found. The untrained horses displayed a significant difference in the AF complexity when comparing right and left atria, whereas such difference was not observed in the trained animals. No evidence of increased structural remodeling or inflammation could be identified. Left atrial dimensions were not significantly increased. The increased AF sustainability in trained horses was not related to fibrosis or inflammation as seen in other animal exercise models.


Subject(s)
Atrial Fibrillation , Humans , Horses , Animals , Heart Atria , Echocardiography , Inflammation
14.
Circ Res ; 132(9): e116-e133, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36927079

ABSTRACT

BACKGROUND: Small-conductance Ca2+-activated K+ (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study. METHODS: Apamin-sensitive SK-channel current (ISK) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF). RESULTS: ISK was significantly higher, and apamin caused larger action potential prolongation in cAF- versus Ctl-cardiomyocytes. Sensitivity analyses in an in silico human atrial cardiomyocyte model identified IK1 and ISK as major regulators of repolarization. Increased ISK in cAF was not associated with increases in mRNA/protein levels of SK-channel subunits in either right- or left-atrial tissue homogenates or right-atrial cardiomyocytes, but the abundance of SK2 at the sarcolemma was larger in cAF versus Ctl in both tissue-slices and cardiomyocytes. Latrunculin-A and primaquine (anterograde and retrograde protein-trafficking inhibitors) eliminated the differences in SK2 membrane levels and ISK between Ctl- and cAF-cardiomyocytes. In addition, the phosphatase-inhibitor okadaic acid reduced ISK amplitude and abolished the difference between Ctl- and cAF-cardiomyocytes, indicating that reduced calmodulin-Thr80 phosphorylation due to increased protein phosphatase-2A levels in the SK-channel complex likely contribute to the greater ISK in cAF-cardiomyocytes. Finally, rapid electrical activation (5 Hz, 10 minutes) of Ctl-cardiomyocytes promoted SK2 membrane-localization, increased ISK and reduced action potential duration, effects greatly attenuated by apamin. Latrunculin-A or primaquine prevented the 5-Hz-induced ISK-upregulation. CONCLUSIONS: ISK is upregulated in patients with cAF due to enhanced channel function, mediated by phosphatase-2A-dependent calmodulin-Thr80 dephosphorylation and tachycardia-dependent enhanced trafficking and targeting of SK-channel subunits to the sarcolemma. The observed AF-associated increases in ISK, which promote reentry-stabilizing action potential duration shortening, suggest an important role for SK-channels in AF auto-promotion and provide a rationale for pursuing the antiarrhythmic effects of SK-channel inhibition in humans.


Subject(s)
Atrial Fibrillation , Animals , Humans , Atrial Fibrillation/metabolism , Apamin/metabolism , Apamin/pharmacology , Primaquine/metabolism , Primaquine/pharmacology , Calmodulin/metabolism , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Anti-Arrhythmia Agents/therapeutic use , Action Potentials/physiology , Small-Conductance Calcium-Activated Potassium Channels/metabolism
15.
Front Cardiovasc Med ; 10: 1139364, 2023.
Article in English | MEDLINE | ID: mdl-36970354

ABSTRACT

Aim: To propose a standardized workflow for 3D-electroanatomical mapping guided pulmonary vein isolation in pigs. Materials and methods: Danish female landrace pigs were anaesthetized. Ultrasound-guided puncture of both femoral veins was performed and arterial access for blood pressure measurement established. Fluoroscopy- and intracardiac ultrasound-guided passage of the patent foramen ovale or transseptal puncture was performed. Then, 3D-electroanatomical mapping of the left atrium was conducted using a high-density mapping catheter. After mapping all pulmonary veins, an irrigated radiofrequency ablation catheter was used to perform ostial ablation to achieve electrical pulmonary vein isolation. Entrance- and exit-block were confirmed and re-assessed after a 20-min waiting period. Lastly, animals were sacrificed to perform left atrial anatomical gross examination. Results: We present data from 11 consecutive pigs undergoing pulmonary vein isolation. Passage of the fossa ovalis or transseptal puncture was uneventful and successful in all animals. Within the inferior pulmonary trunk 2-4 individual veins as well as 1-2 additional left and right pulmonary veins could be cannulated. Electrical isolation by point-by-point ablation of all targeted veins was successful. However, pitfalls including phrenic nerve capture during ablation, ventricular arrhythmias during antral isolation close to the mitral valve annulus and difficulties in accessing right pulmonary veins were encountered. Conclusion: Fluoroscopy- and intracardiac ultrasound-guided transseptal puncture, high-density electroanatomical mapping of all pulmonary veins and complete electrical pulmonary vein isolation can be achieved reproducibly and safely in pigs when using current technologies and a step-by-step approach.

16.
Cardiovasc Res ; 119(3): 614-630, 2023 05 02.
Article in English | MEDLINE | ID: mdl-35689487

ABSTRACT

Obesity is an important contributing factor to the pathophysiology of atrial fibrillation (AF) and its complications by causing systemic changes, such as altered haemodynamic, increased sympathetic tone, and low-grade chronic inflammatory state. In addition, adipose tissue is a metabolically active organ that comprises various types of fat deposits with discrete composition and localization that show distinct functions. Fatty tissue differentially affects the evolution of AF, with highly secretory active visceral fat surrounding the heart generally having a more potent influence than the rather inert subcutaneous fat. A variety of proinflammatory, profibrotic, and vasoconstrictive mediators are secreted by adipose tissue, particularly originating from cardiac fat, that promote atrial remodelling and increase the susceptibility to AF. In this review, we address the role of obesity-related factors and in particular specific adipose tissue depots in driving AF risk. We discuss the distinct effects of key secreted adipokines from different adipose tissue depots and their participation in cardiac remodelling. The possible mechanistic basis and molecular determinants of adiposity-related AF are discussed, and finally, we highlight important gaps in current knowledge, areas requiring future investigation, and implications for clinical management.


Subject(s)
Adiposity , Atrial Fibrillation , Humans , Clinical Relevance , Obesity/metabolism , Adipose Tissue/metabolism , Pericardium
17.
J Cardiovasc Electrophysiol ; 34(1): 126-134, 2023 01.
Article in English | MEDLINE | ID: mdl-36482155

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) creates a complex substrate for atrial fibrillation (AF), which is refractory to many clinically available pharmacological interventions. We investigated atrial antiarrhythmogenic properties and ventricular electrophysiological safety of small-conductance Ca2+ -activated K+ (SK)-channel inhibition in a porcine model for obstructive respiratory events. METHODS: In spontaneously breathing pigs, obstructive respiratory events were simulated by intermittent negative upper airway pressure (INAP) applied via a pressure device connected to the intubation tube. INAP was applied for 75 s, every 10 min, three times before and three times during infusion of the SK-channel inhibitor AP14145. Atrial effective refractory periods (AERP) were acquired before (pre-INAP), during (INAP) and after (post-) INAP. AF-inducibility was determined by a S1S2 atrial pacing protocol. Ventricular arrhythmicity was evaluated by heart rate adjusted QT-interval duration (QT-paced) and electromechanical window (EMW) shortening. RESULTS: During vehicle infusion, INAP transiently shortened AERP (pre-INAP: 135 ± 10 ms vs. post-INAP 101 ± 11 ms; p = .008) and increased AF-inducibility. QT-paced prolonged during INAP (pre-INAP 270 ± 7 ms vs. INAP 275 ± 7 ms; p = .04) and EMW shortened progressively throughout INAP and post-INAP (pre-INAP 80 ± 4 ms; INAP 59 ± 6 ms, post-INAP 46 ± 10 ms). AP14145 prolonged baseline AERP, partially prevented INAP-induced AERP-shortening and reduced AF-susceptibility. AP14145 did not alter QT-paced at baseline (pre-AP14145 270 ± 7 ms vs. AP14145 268 ± 6 ms, p = .83) or QT-paced and EMW-shortening during INAP. CONCLUSION: In a pig model for obstructive respiratory events, the SK-channel-inhibitor AP14145 prevented INAP-associated AERP-shortening and AF-susceptibility without impairing ventricular electrophysiology. Whether SK-channels represent a target for OSA-related AF in humans warrants further study.


Subject(s)
Atrial Fibrillation , Sleep Apnea, Obstructive , Humans , Swine , Animals , Atrial Fibrillation/prevention & control , Acetamides
18.
Nano Lett ; 22(22): 8845-8851, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36332116

ABSTRACT

Implementing superconductors capable of proximity-inducing a large energy gap in semiconductors in the presence of strong magnetic fields is a major goal toward applications of semiconductor/superconductor hybrid materials in future quantum information technologies. Here, we study the performance of devices consisting of InAs nanowires in electrical contact with molybdenum-rhenium (MoRe) superconducting alloys. The MoRe thin films exhibit transition temperatures of ∼10 K and critical fields exceeding 6 T. Normal/superconductor devices enabled tunnel spectroscopy of the corresponding induced superconductivity, which was maintained up to ∼10 K, and MoRe-based Josephson devices exhibited supercurrents and multiple Andreev reflections. We determine an induced superconducting gap lower than expected from the transition temperature and observe gap softening at finite magnetic field. These may be common features for hybrids based on large-gap, type II superconductors. The results encourage further development of MoRe-based hybrids.

19.
Animals (Basel) ; 12(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36359039

ABSTRACT

Second-degree atrioventricular (AV) block is the most common cardiac arrhythmia in horses, affecting 40-90% depending on breed. Usually, the AV blocks occur while the horses are resting and disappear upon exercise and are, therefore, considered to be uneventful for horses. However, if the AV blocks occur frequently, this may result in syncope and collapse. Identifying the cause of second-degree AV block is difficult and often subscribed to high vagal tone. In this report, we present an eight-year-old Quarter horse with a high burden of second-degree AV blocks and multiple collapses. The clinical examination, including neurological examination, blood analysis, 24-h ECG recording and cardiac echocardiography, did not reveal any signs of general or cardiovascular disease besides a high burden of second-degree AV blocks (~300 blocks per hour) and a hyperechoic area in the AV nodal region. An implantable loop recorder (ILR) was inserted to monitor the cardiac rhythm. The ILR detected several consecutive second-degree AV blocks and pauses above 5 s. However, unfortunately, no recordings were available during the collapses. Eventually, the horse was euthanized and the heart inspected. The aortic root was severely cartilaginous and appeared to penetrate the AV node, especially in the His bundle region, possibly explaining the hampered AV conduction. Nevertheless, it is still uncertain if the AV nodal disruption caused the collapses and more knowledge on AV nodal diseases in horses is warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...