Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Geochem Health ; 44(11): 4111-4128, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35001228

ABSTRACT

Geochemical maps can be used for a variety of purposes, one of which is to establish regional or local geochemical thresholds for the analyzed elements. In the case of vanadium, as industrial demand and use increase, it is necessary to expand the development of vanadium in Korea. However, the environmental management standards are insufficient. Therefore, in this study, using geochemical data, we derived geochemical threshold values for the entire country and areas with potential for the development of vanadium deposits. The regional (country-wide) threshold value was derived using logarithmic transformation of raw data (N = 23,548) of the first- and second-order stream sediments collected across the country in the late 1990s and the early 2000s. The median + 2 median absolute deviation (MAD) and Tukey inner fence (TIF) values were 116 mg/kg and 200 mg/kg, respectively. Of these, the TIF standard, which showed 0.6% of data exceeding the threshold, was judged to be appropriate for distinguishing clear enrichment or contamination of vanadium. In the case of the Geumsan and Pocheon, areas with potential for vanadium development, the TIF and median + 2 MAD values of 259 mg/kg and 218 mg/kg, respectively, can be used as the criteria for evaluating the impact of environmental pollution before and after deposit development. Likewise, by deriving threshold values of the target elements using geochemical map data, it is possible to provide basic environmental information for geochemical evaluation and follow-up management in advance during large-scale site development.


Subject(s)
Environmental Monitoring , Vanadium , Vanadium/analysis , Environmental Pollution , Republic of Korea
2.
Environ Sci Pollut Res Int ; 29(1): 999-1008, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34342830

ABSTRACT

This work introduced a new way of fabricating a granular material with the supply of Al-rich precipitates selectively obtained from acid mine drainage (AMD), and its potential as a promising adsorbent for fluoride (F) was evaluated. Through the selective sequential precipitation (SP) process in the field, Al-rich precipitates with high purity (>81%) were collected at the high recovery rate (>99.8%) as a raw material for adsorbent fabrication. The granular adsorbent (ALB) was synthesized through encapsulation of precipitate powders by chemically inducing polymeric bead formation. The characterization results revealed that ALB possessed a highly porous structure and embedded a large number of nanoparticles of amorphous Al hydroxides inside its framework. Less adsorption of F occurred at an alkaline pH condition due to the competitive effect of hydroxyl ions. The adsorption process can be divided into fast adsorption by the outer surface and slow diffusion in the inner phase. The maximum adsorption capacity of ALB for F was calculated to be 17.7 mg g-1 in the Langmuir isotherm model fitting results. By the repetitive adsorption/desorption and XPS results, it turned out that both chemisorption and physisorption gave a contribution in the removal of F, and the regeneration of adsorbent using NaOH was effective to restore the adsorption capability but accompanied the loss of adsorption sites. As a result, it can be concluded that a granule-type material fabricated using Al-rich precipitates selectively recovered from AMD neutralization can be considered as a promising adsorbent for F removal in aqueous solution.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Aluminum , Fluorides , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 29(2): 2136-2145, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34363167

ABSTRACT

In this study, the arsenic (As) removal characteristics of a Mn-Fe binary coating formed on waste sand filter of an acid mine drainage treatment facility are investigated. Owing to the Mn-Fe binary coating forming on the surfaces of the sand grains, its potential for arsenic removal, particularly As(III), was evaluated and characterized through batch experiments and x-ray absorption spectroscopy. Sorption isotherms reveal that the Mn-Fe binary coating exhibits comparable removal efficiencies for As(III) and As(V) under low initial As concentrations. However, at higher initial As(III) and As(V) concentrations, the As(III) removal efficiency increases because of newly formed active adsorption sites from reductive dissolution of Mn. The oxidation of the As(III) and reduction of the Mn oxide phases are verified through As K-edge and Mn K-edge X-ray absorption near edge fine structure analysis. The outstanding As(III) removal efficiency of the Mn-Fe binary coating suggests synergy of Fe- and Mn-oxides, highlighting a potential application for this coating system. The natural formation of binary coating through acid mine drainage treatment reported in this study indicates that similar coating can form naturally in other environments, thus, providing plausible natural attenuation processes for arsenic immobilization.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Adsorption , Oxidation-Reduction , Oxides , Water Pollutants, Chemical/analysis
4.
Environ Technol ; 42(3): 397-409, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31179862

ABSTRACT

People who drink groundwater in rural areas of Southeast Asia are exposed to pathogens and arsenic (As)-related health problems. A water treatment system consisting of electrocoagulation reactors, using iron (Fe) electrodes and a filtration tank, was designed to treat complex contaminated groundwater for drinking. Its applicability was demonstrated near the Red River in Vietnam. The water treatment system reduced 10.3 CFU/mL of total coliform and 376 µg/L of As(III) in the groundwater to 0 CFU/mL and 6.68 µg/L, respectively. Total coliforms were attenuated by Fe(II) infiltration or enmeshed during Fe precipitate formation. Of the total As, 43% formed As(III) complexation with the Fe precipitates and the other 57% was oxidized to As(V) then adsorbed to Fe precipitates. The Fe precipitates, containing total coliforms and As, were separated from the discharge water in the filtration tank. The system required 49 W of power to operate, which equates to 423 kWh/year, to continuously purify 0.5 t water/day. This requirement was powered by a 380-750 W solar panel, without external energy supply, making the water treatment system an appropriate option for addressing drinking water problems in rural areas.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Water Purification , Arsenic/analysis , Electrocoagulation , Humans , Vietnam , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 351: 108-116, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29525745

ABSTRACT

In this research, an electrochemical wastewater treatment system, powered through the conversion of temperature difference into energy, was designed. The wastewater treatment system was applied to drainage flowing from two different mines, one contaminated by arsenic (As), the other ferrous iron (Fe2+). Arsenic was adsorbed on, or co-precipitated with, iron hydroxide generated from iron electrodes. A pseudo second order model well described the tendency for As removal. Ferrous iron oxidation occurred directly on graphite electrodes and followed a first order reaction model. The efficiency of As and Fe2+ removal was up to 99.7% and 97.9%, respectively. The rate constants for each model were proportional to given temperature differences, as the relationship between current generation and temperature difference was linear. Economic evaluation of the wastewater treatment system was performed by comparing the predicted cost of the thermocouples under particular environmental conditions. The thermocouple technology currently available could be applied to wastewater treatment for hot springs with high temperatures and high As concentrations. The applicability of the system to low temperature wastewaters will expand as energy production capacity per unit cost of thermocouples increases, as occurred with the photovoltaic and heat pump systems currently in use.

6.
Environ Monit Assess ; 189(5): 207, 2017 May.
Article in English | MEDLINE | ID: mdl-28382432

ABSTRACT

In predicting the acid-forming potential of rock samples, a combination of acid-base accounting (ABA) and net acid generation (NAG) tests has been commonly used. While simple and economical, this method sometimes shows low reliability such as categorizing certain samples as uncertain (UC). ABA and NAG tests were modified to selectively recover valid minerals in nature and substituted for the original tests. ABA test overestimated acid-producing capacity (in the case of weathered samples) and acid-neutralizing capacity (in the case of plagioclase-including samples) compared to the modified ABA test. NAG test yielded lower NAG pH compared to modified NAG test for samples with high total C content and low total S content. By comparing the correlation coefficients between acid generation amounts by the two evaluation methods, it was confirmed that modified evaluation method (MEM) has a much higher reliability (R 2 = 0.9582) than existing evaluation method (EEM) (R 2 = 0.5873). It was also concluded that exploiting advantages of both EEM and MEM is recommended where EEM is initially applied for general classification and a supplemented static test of MEM is executed for the purpose of correcting the error of UC categorized samples.


Subject(s)
Environmental Monitoring/methods , Geological Phenomena , Minerals/chemistry , Models, Theoretical , Acids/analysis , Hydrogen-Ion Concentration , Mining , Reproducibility of Results , Weather
7.
Environ Monit Assess ; 189(4): 165, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28299504

ABSTRACT

The main purpose of this research was to evaluate the geochemical properties of rocks for a single indicator of acid-forming potential. The indicators, such as net acid generation (NAG), NAG pH and total S, were applied to 312 rock samples of various geological characteristics. Additional indicators, such as a Modified NAG pH, paste pH and available acid neutralizing capacity (ANC), were applied to 22 selected samples. Among them, NAG pH was considered the most plausible single indicator in evaluating acid-forming potential, as it is simple to measure, widely applicable to various samples and can be used to estimate the NAG value. The acid-forming potential of 287 samples (92% of samples examined in this research) was classified as either non-acid forming (NAF) or potentially acid forming (PAF) by NAG pH, with an NAF criteria of <3.21 and PAF of >4.52. The NAG pH was also a good estimate of the risk of short-term acid release when combined with paste pH information. However, application of NAG pH to coal mine wastes, with high organic carbon contents, produced erroneous results due to the generation of organic acid during the NAG test. In this research, a Modified NAG pH was assessed as an alternative to NAG pH in such situations.


Subject(s)
Environmental Monitoring/methods , Geological Phenomena , Mining , Acids , Geology , Hydrogen-Ion Concentration
8.
J Hazard Mater ; 326: 87-93, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27988404

ABSTRACT

Simultaneous carbon mineralization during neutralization of bauxite residue, a caustic alkaline by-product of alumina refining, was tested using laboratory batch and a field pilot study in contact with atmospheric CO2. Since CO2 sequestration is limited by the Ca concentration in the bauxite residue, extra Ca sources were added in a semi-soluble mineral and salt form (flue gas desulfurization gypsum or CaCl2) to verify whether this Ca addition accelerated and enlarged the CO2 sequestration obtained as a consequence of neutralization. The results of 55 days of batch and longer-term field tests were in good agreement, and the neutralization rate was accelerated through the addition of both Ca sources. Without the addition of the extra Ca source, atmospheric CO2 contributed to neutralization of pore water alkalinity alone, while Ca addition induced further neutralization through mineral carbonation of atmospheric CO2 to CaCO3. This simple addition of environmentally benign Ca to bauxite residue may provide a feasible bauxite residue management practice that is cost-effective and easy to apply in the field.

9.
Sci Total Environ ; 557-558: 212-20, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26994808

ABSTRACT

Acid mine drainage (AMD) generated from mining activities has been recognized as a serious problem due to its increased acidity and high concentration of heavy metals. In this research, a feasibility test of the selective precipitation (SP) process was performed using AMD discharged from a currently operating mine in Korea for the purpose of minimizing the environmental impact of AMD. For the SP process, a pilot scale equipment (100L reaction tank) was used in field and among various metals, Cu and Zn were the target metals. Through the research, it was confirmed that AMD from an operating mine has two disadvantages of being applied to the SP: altering water quality and unexpected inclusion of clay debris. Despite unfavorable conditions, Cu and Zn precipitate of 80% purity with 90% precipitation rate was able to be obtained from 1.4L/min (2.0tons/day) AMD. The recovered precipitates were identified as amorphous CuS and ZnS with small amounts of impurities (Si minerals, CuFeS2, and Fe/Al hydroxide). The strategies to reduce these impurities were also discussed. Recovery rate, which is the amount of precipitate collected per unit volume of AMD, was proposed as an indicator to evaluate the working efficiency of the SP process. It was confirmed that the recovery rate was strongly dependent on flow rate and dose of coagulant. The results of this study may be helpful in reducing the potential complications which occurs when SP is applied on field.

10.
Environ Technol ; 37(19): 2483-93, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26936197

ABSTRACT

This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0-4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe(2+) oxidation.


Subject(s)
Industrial Waste , Mining , Oxygen/chemistry , Water Purification/instrumentation , Biodegradation, Environmental , Oxygen/analysis , Water Pollutants, Chemical , Water Purification/methods
11.
Environ Sci Pollut Res Int ; 22(4): 3013-22, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25231736

ABSTRACT

Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using Na2CO3 were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or Na2CO3 as neutralizing agents.


Subject(s)
Aluminum/isolation & purification , Chemical Precipitation , Copper/isolation & purification , Iron/isolation & purification , Mining , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Zinc/isolation & purification , Aluminum/analysis , Computer Simulation , Copper/analysis , Hydrogen-Ion Concentration , Iron/analysis , Water Pollutants, Chemical/analysis , Zinc/analysis
13.
Environ Sci Pollut Res Int ; 21(5): 3722-32, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24281682

ABSTRACT

Successive alkalinity-producing systems (SAPSs) is a key unit process in the passive treatment of acidic mine drainage. Physico-chemistry and pyrosequencing-based bacterial communities of two passive treatment processes in Gapjung (GJ) and Seokbong (SB) were analyzed. The influent of SB harbored higher levels of acidity and metals than that of GJ. SAPS-SB demonstrated better performance of acidity neutralization and metal removal than SAPS-GJ, despite its shorter hydraulic retention time and higher acidity. System diagnosis revealed that the capacities of SAPSs were not well predicted in the design steps. Bacterial diversity indices and composition were compared at the same sequence read number for fair evaluation. Most of the bacterial sequences were affiliated with uncultured species. A notable difference was observed in the bacterial community compositions of the SAPSs in GJ and SB. Classes of putative sulfate-reducing bacteria, Clostridia (8.3 %) and Deltaproteobacteria (6.1 %), were detected in SAPS-GJ, and Clostridia (14.6 %) was detected in SAPS-SB. Bacilli, which is not a known sulfate-reducing bacterial group, was the second largest class (12.8 %) in SAPS-GJ and the largest class (51.1 %) in SAPS-SB, suggesting that Bacilli may have a prominent role in SAPS. One hundred ninety operational taxonomic units were shared, which occupied ~10 % of each number of total operational taxonomic units in SAPS-GJ and SAPS-SB, respectively. Bacilli and Clostridia were the major shared classes, and Bacillus, Lysinibacillus, and Ureibacillus were the major shared genera. Rarefaction analysis, richness estimates, diversity estimates, and abundance rank analysis show that the sediment bacterial community of SAPS-GJ was more diverse and more evenly distributed than that of SAPS-SB.


Subject(s)
Bacteria/classification , Coal Mining , Soil Microbiology , Bacteria/genetics , Bacteria/metabolism , Biodiversity , DNA, Bacterial/genetics , Hydrogen-Ion Concentration , Industrial Waste , Metals/metabolism , Soil Pollutants/metabolism , Waste Management/methods
14.
Environ Geochem Health ; 35(6): 735-43, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23754100

ABSTRACT

In Korea, the heavy metal pollution from about 1,000 abandoned mines has been a serious environmental issue. Especially, the surface waters, groundwaters, and soils around mines have been contaminated by heavy metals originating from acid mine drainage (AMD) and mine tailings. So far, AMD was considered as a waste stream to be treated to prevent environmental pollutions; however, the stream contains mainly Fe and Al and valuable metals such as Ni, Zn, and Cu. In this study, Visual MINTEQ simulation was carried out to investigate the speciation of heavy metals as functions of pH and neutralizing agents. Based on the simulation, selective pH values were determined to form hydroxide or carbonate precipitates of Cu, Zn, and Ni. Experiments based on the simulation results show that the recovery yield of Zn and Cu were 91 and 94 %, respectively, in a binary mixture of Cu and Zn, while 95 % of Cu and 94 % of Ni were recovered in a binary mixture of Cu and Ni. However, the recovery yield and purity of Zn and Ni were very low because of similar characteristics of Zn and Ni. Therefore, the mixture of Cu and Zn or Cu and Ni could be recovered by selective precipitation via pH adjustment; however, it is impossible to recover selectively Zn and Ni in the mixture of them.


Subject(s)
Copper/chemistry , Environmental Restoration and Remediation/methods , Nickel/chemistry , Water Pollutants, Chemical/chemistry , Water Pollution, Chemical/prevention & control , Zinc/chemistry , Computer Simulation , Environmental Monitoring , Microscopy, Electron, Scanning , Republic of Korea , Spectrometry, X-Ray Emission
15.
J Environ Manage ; 111: 150-8, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-22892144

ABSTRACT

Pilot-scale field-testing of passive bioreactors was performed to evaluate the efficiency of a mixture of four substrates (cow manure compost, mushroom compost, sawdust, and rice straw) relative to mushroom compost alone, and of the effect of the Fe/Mn ratio, during the treatment of acid mine drainage (AMD) over a 174-day period. Three 141 L columns, filled with either mushroom compost or the four substrate mixture (in duplicate), were set-up and fed with AMD from a closed mine site, in South Korea, using a 4-day hydraulic retention time. In the former bioreactor, effluent deterioration was observed over 1-2 months, despite the good efficiency predicted by the physicochemical characterization of mushroom compost. Steady state effluent quality was then noted for around 100 days before worsening in AMD source water occurred in response to seasonal variations in precipitation. Such changes in AMD quality resulted in performance deterioration in all reactors followed by a slow recovery toward the end of testing. Both substrates (mushroom compost and mixtures) gave satisfactory performance in neutralizing pH (6.1-7.8). Moreover, the system was able to consistently reduce sulfate from day 49, after the initial leaching out from organic substrates. Metal removal efficiencies were on the order of Al (∼100%) > Fe (68-92%) > Mn (49-61%). Overall, the mixed substrates showed comparable performance to mushroom compost, while yielding better effluent quality upon start-up. The results also indicated mushroom compost could release significant amounts of Mn and sulfate during bioreactor operation.


Subject(s)
Agaricales/metabolism , Bioreactors/microbiology , Environmental Restoration and Remediation/methods , Manure , Water Pollutants, Chemical/metabolism , Wood/chemistry , Animals , Cattle , Environmental Monitoring , Hydrogen-Ion Concentration , Metals/analysis , Metals/metabolism , Mining , Pilot Projects , Republic of Korea , Seasons , Soil Pollutants/analysis , Soil Pollutants/metabolism , Sulfates/analysis , Sulfates/metabolism , Time Factors , Water Pollutants, Chemical/analysis
16.
Environ Geochem Health ; 34 Suppl 1: 115-21, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21814816

ABSTRACT

This study was carried out to evaluate longevity of available organic materials used for sulfate-reducing bacteria (SRB) activity in vertical flow ponds (VFPs) to treat mine drainage in South Korea. Spent mushroom compost samples (SMC) were tested as substrates in VFPs and analyzed for total organic carbon in VFPs, and were collected to analyze total organic carbon (TOC), T-N, T-P, K, metals and residual cellulose to check the longevity assessment. Chemical analysis revealed that the average contents of Fe, Al and Mn in SMC of VFPs were 19,907, 32,137 and 434 mg/kg, respectively. The contents of Fe and Al in SMC of VFPs were much higher than those of the unused SMC (control), but to the contrary, those of Mn showed a reversed tendency. Average TOC content of the controls was 64.19% but in one of the VFP substrates was as low as 15.92%. This might be resulted from SRB consumed the available organic carbon in SMC as VFPs system aged. Contents of T-N in VFPs tended to decrease as VFPs aged. The residual cellulose ranged from 3.88 to 6.72% (g/g). There existed a negative relationship between residual cellulose contents and ages of VFPs. Assuming that SMC in all VFPs had similar compositions when the VFPs were initially established, trend analysis predicted that the amount of carbon source for SRB might be available for 12-15 years further, depending on VFPs.


Subject(s)
Biodegradation, Environmental , Bioreactors/microbiology , Mining , Organic Chemicals/metabolism , Water Pollutants, Chemical/metabolism , Agaricales/chemistry , Agaricales/metabolism , Carbon/analysis , Carbon/metabolism , Cellulose/analysis , Metals/analysis , Metals/metabolism , Organic Chemicals/analysis , Ponds , Republic of Korea , Sulfur/metabolism , Sulfur-Reducing Bacteria/metabolism , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
17.
Chemosphere ; 83(1): 76-82, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21262523

ABSTRACT

Bioreactors are one possible best sustainable technology to address the mine-impacted water problems. Several prospective substrates (mushroom compost, cow manure, sawdust, wood chips, and cut rice straw) were characterized for their ability to serve as a source of food and energy for sulfate-reducing bacteria. Twenty bench-scale batch bioreactors were then designed and set up to investigate relative effectiveness of various mixtures of substrates to that of mushroom compost, the most commonly used substrate in field bioreactors, for treating mine drainage with acidic (pH 3) and moderate pH (pH 6). Overall, reactive mixtures showed satisfactory performances in generating alkalinity, reducing sulfate and removing metals (Al>Fe>Mn) (up to 100%) at both pH conditions, for all substrates. The mixture of sawdust and cow manure was found as the most effective whereas the mixture containing 40% cut rice straw gave limited efficiency, suggesting organic carbon released from this substrate is not readily available for biodegradation under anaerobic conditions. The mushroom compost-based bioreactors released significant amount of sulfate, which may raise a more concern upon the start-up of field-scale bioreactors. The correlation between the extent of sulfate reduction and dissolved organic carbon/SO(4)(2-) ratio was weak and this indicates that the type of dissolved organic carbon plays a more important role in sulfate reduction than the absolute concentration and that the ratio is not sensitive enough to properly describe the relative effectiveness of substrate mixtures.


Subject(s)
Agaricales/chemistry , Bioreactors/microbiology , Mining , Soil/chemistry , Water Pollutants, Chemical/metabolism , Agaricales/metabolism , Biodegradation, Environmental , Hydrogen-Ion Concentration , Manure , Soil Pollutants/analysis , Soil Pollutants/metabolism , Sulfates/metabolism , Water Pollutants, Chemical/analysis , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...