Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Nature ; 631(8020): 300-306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898282

ABSTRACT

Graphene-based, high-quality, two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity1-21. Specifically, superconductivity has been observed in both electron- and hole-doped twisted graphene moiré systems1-17, whereas in crystalline graphene systems, superconductivity has so far been observed only in hole-doped rhombohedral trilayer graphene (RTG)18 and hole-doped Bernal bilayer graphene (BBG)19-21. Recently, enhanced superconductivity has been demonstrated20,21 in BBG because of the proximity to a monolayer WSe2. Here we report the observation of superconductivity and a series of flavour-symmetry-breaking phases in electron- and hole-doped BBG/WSe2 devices by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when the applied electric fields drive the BBG electron or hole wavefunctions towards the WSe2 layer, underscoring the importance of the WSe2 layer in the observed superconductivity. The hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. By contrast, the electron-doped superconductivity obeys the Pauli limit, although the proximity-induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of superconductor devices based on BBG.

2.
Nano Lett ; 24(27): 8445-8452, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38917425

ABSTRACT

The interfacial FeSe/TiO2-δ coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO3(001)-(√13 × âˆš13)-R33.7° surface. Our results disclosed the out-of-plane Se-Fe-Se triple layer gradient variation, switched DOS for Fe sites on and off TiO5□, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × âˆš13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle-hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.

3.
ACS Nano ; 18(27): 17786-17793, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38935417

ABSTRACT

The discovery of high-mobility two-dimensional electron gas and low carrier density superconductivity in multiple SrTiO3-based heterostructures has stimulated intense interest in the surface properties of SrTiO3. The recent discovery of high-Tc superconductivity in the monolayer FeSe/SrTiO3 led to the upsurge and underscored the atomic precision probe of the surface structure. By performing atomically resolved cryogenic scanning tunneling microscopy/spectroscopy characterization on dual-TiO2-δ-terminated SrTiO3(001) surfaces with (√13 × âˆš13), c(4 × 2), mixed (2 × 1), and (2 × 2) reconstructions, we disclosed universally broken rotational symmetry and contrasting bias- and temperature-dependent electronic states for apical and equatorial oxygen sites. With the sequentially evolved surface reconstructions and simultaneously increasing equatorial oxygen vacancies, the surface anisotropy reduces and the work function lowers. Intriguingly, unidirectional stripe orders appear on the c(4 × 2) surface, whereas local (4 × 4) order emerges and eventually forms long-range unidirectional c(4 × 4) charge order on the (2 × 2) surface. This work reveals robust unidirectional charge orders induced by oxygen vacancies due to strong and delicate electronic-lattice interaction under broken rotational symmetry, providing insights into understanding the complex behaviors in perovskite oxide-based heterostructures.

4.
Science ; 384(6694): 414-419, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662836

ABSTRACT

Degeneracies in multilayer graphene, including spin, valley, and layer degrees of freedom, can be lifted by Coulomb interactions, resulting in rich broken-symmetry states. Here, we report a ferromagnetic state in charge-neutral ABCA-tetralayer graphene driven by proximity-induced spin-orbit coupling from adjacent tungsten diselenide. The ferromagnetic state is identified as a Chern insulator with a Chern number of 4; its maximum Hall resistance reaches 78% quantization at zero magnetic field and is fully quantized at either 0.4 or -1.5 tesla. Three distinct broken-symmetry insulating states, layer-antiferromagnet, Chern insulator, and layer-polarized insulator, along with their transitions, can be continuously tuned by the vertical displacement field. In this system, the magnetic order of the Chern insulator can be switched by three knobs, including magnetic field, electrical doping, and vertical displacement field.

5.
Nature ; 628(8009): 758-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538800

ABSTRACT

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

7.
Nat Nanotechnol ; 19(2): 188-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37996516

ABSTRACT

Interactions among charge carriers in graphene can lead to the spontaneous breaking of multiple degeneracies. When increasing the number of graphene layers following rhombohedral stacking, the dominant role of Coulomb interactions becomes pronounced due to the significant reduction in kinetic energy. In this study, we employ phonon-polariton-assisted near-field infrared imaging to determine the stacking orders of tetralayer graphene devices. Through quantum transport measurements, we observe a range of spontaneous broken-symmetry states and their transitions, which can be finely tuned by carrier density n and electric displacement field D. Specifically, we observe a layer-antiferromagnetic insulator at n = D = 0 with a gap of approximately 15 meV. Increasing D allows for a continuous phase transition from a layer-antiferromagnetic insulator to a layer-polarized insulator. By simultaneously tuning n and D, we observe isospin-polarized metals, including spin-valley-polarized and spin-polarized metals. These transitions are associated with changes in the Fermi surface topology and are consistent with the Stoner criteria. Our findings highlight the efficient fabrication of specially stacked multilayer graphene devices and demonstrate that crystalline multilayer graphene is an ideal platform for investigating a wide range of broken symmetries driven by Coulomb interactions.

8.
Inorg Chem ; 62(47): 19230-19237, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37874974

ABSTRACT

Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).

9.
Nano Lett ; 23(21): 9704-9710, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37870505

ABSTRACT

Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise S = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice. Through tuning the magnetic exchange strength between the unpaired spin and Cooper pairs, a quantum phase transition from the singlet to the doublet state has been observed, consistent with the quantum spin models. From our calculations, the particle-hole asymmetry is induced by the Coulomb scattering potential and gives a transition point about kBTk ≈ 1.6Δ. Our work demonstrates that delocalized π electron magnetism hosts highly tunable magnetic bound states, which can be further developed to study the Majorana bound states and other rich quantum phases of low-dimensional quantum spins on superconductors.

10.
Nat Commun ; 14(1): 5340, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660171

ABSTRACT

The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism in epitaxially grown Cr2Te3 thin films and investigate the evolution of the underlying electronic structure by synergistic angle-resolved photoemission spectroscopy, scanning tunneling microscopy, x-ray absorption spectroscopy, and first-principle calculations. A conspicuous ferromagnetic transition from Stoner to Heisenberg-type is directly observed in the atomically thin limit, indicating that dimensionality is a powerful tuning knob to manipulate the novel properties of 2D magnetism. Monolayer Cr2Te3 retains robust ferromagnetism, but with a suppressed Curie temperature, due to the drastic drop in the density of states near the Fermi level. Our results establish atomically thin Cr2Te3 as an excellent platform to explore the dual nature of localized and itinerant ferromagnetism in 2D magnets.

11.
J Am Chem Soc ; 145(13): 7136-7146, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36951172

ABSTRACT

The emergence of quantum magnetism in nanographenes provides ample opportunities to fabricate purely organic devices for spintronics and quantum information. Although heteroatom doping is a viable way to engineer the electronic properties of nanographenes, the synthesis of doped nanographenes with collective quantum magnetism remains elusive. Here, a set of nitrogen-doped nanographenes (N-NGs) with atomic precision are fabricated on Au(111) through a combination of imidazole [2+2+2]-cyclotrimerization and cyclodehydrogenation reactions. High-resolution scanning probe microscopy measurements reveal the presence of collective quantum magnetism for nanographenes with three radicals, with spectroscopic features which cannot be captured by mean-field density functional theory calculations but can be well reproduced by Heisenberg spin model calculations. In addition, the mechanism of magnetic exchange interaction of N-NGs has been revealed and compared with their counterparts with pure hydrocarbons. Our findings demonstrate the bottom-up synthesis of atomically precise N-NGs which can be utilized to fabricate low-dimensional extended graphene nanostructures for realizing ordered quantum phases.

12.
Nat Chem ; 15(1): 53-60, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36280765

ABSTRACT

Unlike classic spins, quantum magnets are spin systems that interact via the exchange interaction and exhibit collective quantum behaviours, such as fractional excitations. Molecular magnetism often stems from d/f-transition metals, but their spin-orbit coupling and crystal field induce a significant magnetic anisotropy, breaking the rotation symmetry of quantum spins. Thus, it is of great importance to build quantum nanomagnets in metal-free systems. Here we have synthesized individual quantum nanomagnets based on metal-free multi-porphyrin systems. Covalent chains of two to five porphyrins were first prepared on Au(111) under ultrahigh vacuum, and hydrogen atoms were then removed from selected carbons using the tip of a scanning tunnelling microscope. The conversion of specific porphyrin units to their radical or biradical state enabled the tuning of intra- and inter-porphyrin magnetic coupling. Characterization of the collective magnetic properties of the resulting chains showed that the constructed S = 1/2 antiferromagnets display a gapped excitation, whereas the S = 1 antiferromagnets exhibit distinct end states between even- and odd-numbered spin chains, consistent with Heisenberg model calculations.

13.
Nano Lett ; 22(18): 7651-7658, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36066512

ABSTRACT

The metal-intercalated bilayer graphene has a flat band with a high density of states near the Fermi energy and thus is anticipated to exhibit an enhanced strong correlation effect and associated fascinating phenomena, including superconductivity. By using a self-developed multifunctional scanning tunneling microscope, we succeeded in observing the superconducting energy gap and diamagnetic response of a Ca-intercalated bilayer graphene below a critical temperature of 8.83 K. The revealed high value of gap ratio, 2Δ/kBTc ≈ 5.0, indicates a strong coupling superconductivity, while the variation of penetration depth with temperature and magnetic field indicates an isotropic s-wave superconductor. These results provide crucial experimental clues for understanding the origin and mechanism of superconductivity in carrier-doped graphene.

14.
ACS Nano ; 16(6): 9810-9818, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35695549

ABSTRACT

Breaking time reversal symmetry in a topological insulator may lead to quantum anomalous Hall effect and axion insulator phase. MnBi4Te7 is a recently discovered antiferromagnetic topological insulator with TN ∼ 12.5 K, which is composed of an alternatively stacked magnetic layer (MnBi2Te4) and nonmagnetic layer (Bi2Te3). By means of scanning tunneling spectroscopy, we clearly observe the electronic state present at a step edge of a magnetic MnBi2Te4 layer but absent at nonmagnetic Bi2Te3 layers at 4.5 K. Furthermore, we find that as the temperature rises above TN the edge state vanishes, while the point defect induced state persists upon an increase in temperature. These results confirm the observation of magnetism-induced edge states. Our analysis based on an axion insulator theory reveals that the nontrivial topological nature of the observed edge state.

15.
Phys Rev Lett ; 128(20): 206802, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657877

ABSTRACT

High-quality stanene films have been actively pursued for realizing not only quantum spin Hall edge states without backscattering, but also intrinsic superconductivity, two central ingredients that may further endow the systems to host topological superconductivity. Yet to date, convincing evidence of topological edge states in stanene remains to be seen, let alone the coexistence of these two ingredients, owing to the bottleneck of growing high-quality stanene films. Here we fabricate one- to five-layer stanene films on the Bi(111) substrate and observe the robust edge states using scanning tunneling microscopy/spectroscopy. We also measure distinct superconducting gaps on different-layered stanene films. Our first-principles calculations further show that hydrogen passivation plays a decisive role as a surfactant in improving the quality of the stanene films, while the Bi substrate endows the films with nontrivial topology. The coexistence of nontrivial topology and intrinsic superconductivity renders the system a promising candidate to become the simplest topological superconductor based on a single-element system.

16.
Adv Mater ; 34(28): e2200956, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35560711

ABSTRACT

Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 µm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moiré superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of ≈1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices.

17.
Phys Rev Lett ; 128(10): 106802, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35333064

ABSTRACT

By combining angle-resolved photoemission spectroscopy, scanning tunneling microscopy, atomic force microscope based piezoresponse force microscopy and first-principles calculations, we have studied the low-energy band structure, atomic structure, and charge polarization on the surface of a topological semimetal candidate TaNiTe_{5}. Dirac-like surface states were observed on the (010) surface by angle-resolved photoemission spectroscopy, consistent with the first-principles calculations. On the other hand, piezoresponse force microscopy reveals a switchable ferroelectriclike polarization on the same surface. We propose that the noncentrosymmetric surface relaxation observed by scanning tunneling microscopy could be the origin of the observed ferroelectriclike state in this novel material. Our findings provide a new platform with the coexistence of a ferroelectriclike surface charge distribution and novel surface states.

18.
Phys Rev Lett ; 127(23): 236401, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34936772

ABSTRACT

Quantum materials with layered kagome structures have drawn considerable attention due to their unique lattice geometry, which gives rise to flat bands together with Dirac-like dispersions. Recently, vanadium-based materials with layered kagome structures were discovered to be topological metals, which exhibit charge density wave (CDW) properties, significant anomalous Hall effect, and unusual superconductivity at low temperatures. Here, we employ angle-resolved photoemission spectroscopy to investigate the electronic structure evolution upon the CDW transition in a vanadium-based kagome material RbV_{3}Sb_{5}. The CDW phase transition gives rise to a partial energy gap opening at the boundary of the Brillouin zone and, most importantly, the emergence of new van Hove singularities associated with large density of states, which are absent in the normal phase and might be related to the superconductivity observed at lower temperatures. Our work sheds light on the microscopic mechanisms for the formation of the CDW and superconducting states in these topological kagome metals.

19.
Science ; 374(6573): 1381-1385, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34709939

ABSTRACT

A sufficiently large supercurrent can close the energy gap in a superconductor and create gapless quasiparticles through the Doppler shift of quasiparticle energy caused by finite Cooper pair momentum. In this gapless superconducting state, zero-energy quasiparticles reside on a segment of the normal-state Fermi surface, whereas the remaining Fermi surface is still gapped. We use quasiparticle interference to image the field-controlled Fermi surface of bismuth telluride (Bi2Te3) thin films under proximity effect from the superconductor niobium diselenide (NbSe2). A small applied in-plane magnetic field induces a screening supercurrent, which leads to finite-momentum pairing on the topological surface states of Bi2Te3. We identify distinct interference patterns that indicate a gapless superconducting state with a segmented Fermi surface. Our results reveal the strong impact of finite Cooper pair momentum on the quasiparticle spectrum.

20.
Nat Commun ; 12(1): 2846, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33990597

ABSTRACT

We propose a new type of spin-valley locking (SVL), named C-paired SVL, in antiferromagnetic systems, which directly connects the spin/valley space with the real space, and hence enables both static and dynamical controls of spin and valley to realize a multifunctional antiferromagnetic material. The new emergent quantum degree of freedom in the C-paired SVL is comprised of spin-polarized valleys related by a crystal symmetry instead of the time-reversal symmetry. Thus, both spin and valley can be accessed by simply breaking the corresponding crystal symmetry. Typically, one can use a strain field to induce a large net valley polarization/magnetization and use a charge current to generate a large noncollinear spin current. We predict the realization of the C-paired SVL in monolayer V2Se2O, which indeed exhibits giant piezomagnetism and can generate a large transverse spin current. Our findings provide unprecedented opportunities to integrate various controls of spin and valley with nonvolatile information storage in a single material, which is highly desirable for versatile fundamental research and device applications.

SELECTION OF CITATIONS
SEARCH DETAIL