Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 606
1.
Anal Chem ; 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858219

In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.

2.
Chin Med Sci J ; 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38862406

Brain-computer interface (BCI) technology is rapidly advancing in medical research and application. As an emerging biomedical engineering technology, it has garnered significant attention in the clinical research of brain disease diagnosis and treatment, neurological rehabilitation, and mental health. However, BCI also raises several challenges and ethical concerns in clinical research. In this article, the authors investigate and discuss three aspects of BCI in medicine and healthcare: the state of ethical governance, multidimensional ethical challenges pertaining to BCI in clinical research, and suggestive concerns for ethical review. Despite the great potentials of frontier BCI research and development in the field of medical care, the ethical challenges induced by itself, clinical research and complexity of brain function has put forward new special fields for ethics on BCI. To ensure "responsible innovation" BCI research in healthcare and medicine, the creation of an ethical global governance framework and system, along with special guidelines for cutting-edge BCI research in medicine are suggested.

3.
Am J Hypertens ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38782571

BACKGROUND: In the hypothalamic paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHRs), the expression of Testis specific protein, Y-encoded-like 2 (TSPYL2) and the phosphorylation level of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) are higher comparing with the normotensive Wistar-Kyoto rats (WKY). But how they are involved in hypertension remains unclear. TSPYL2 may interact with JAK2/STAT3 in PVN to sustain the high blood pressure during hypertension. METHODS: Knockdown of TSPYL2 via adeno-associated virus (AAV) carrying shRNA was conducted through bilateral micro-injection into the PVN of SHR and WKY rats. JAK2/STAT3 inhibition was achieved by intraperitoneally or PVN injection of AG490 into the SHRs. Blood pressure (BP), plasma norepinephrine (NE), PVN inflammatory response, and PVN oxidative stress were measured. RESULTS: TSPYL2 knock-down in the PVN of SHRs but not WKYs led to reduced BP and plasma NE, and deactivation of JAK2/STAT3, decreased expression of pro-inflammatory cytokine IL-1ß, and increased expression of anti-inflammatory cytokine IL-10 in the PVN. Meanwhile, AG490 administrated in both ways reduced the blood pressure in the SHRs and deactivated JAK2/STAT3 but failed to change the expression of TSPYL2 in PVN. AG490 also downregulated expression of IL-1ß and upregulated expression of IL-10. Both knockdown of TSPYL2 and inhibition of JAK2/STAT3 can reduce the oxidative stress in the PVN of SHRs. CONCLUSION: JAK2/STAT3 is regulated by TSPYL2 in the PVN of SHRs, and PVN TSPYL2/JAK2/STAT3 is essential for maintaining high blood pressure in the hypertensive rats, making it a potential therapeutic target for hypertension.

4.
Insect Sci ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38772748

C-type lectins (CTLs) act as pattern recognition receptors (PRRs) to initiate the innate immune response in insects. A CTL with dual carbohydrate recognition domains (CRDs) (named immulectin-4 [IML-4]) was selected from the Ostrinia furnacalis transcriptome dataset for functional studies. We cloned the full-length complementary DNA of O. furnacalis IML-4 (OfIML-4). It encodes a 328-residue protein with a Glu-Pro-Asn (EPN) and Gln-Pro-Asp (QPD) motifs in 2 CRDs, respectively. OfIML-4 messenger RNA levels increased significantly upon the bacterial and fungal infection. Recombinant OfIML-4 (rIML-4) and its individual CRDs (rCRD1 and rCRD2) exhibited the binding ability to various microorganisms including Escherichia coli, Micrococcus luteus, Pichia pastoris, and Beauveria bassiana, and the cell wall components including lipopolysaccharide from E. coli, peptidoglycan from M. luteus or Bacillus subtilis, and curdlan from Alcaligenes faecalis. The binding further induced the agglutination of E. coli, M. luteus, and B. bassiana in the presence of calcium, the phagocytosis of Staphylococcus aureus by the hemocytes, in vitro encapsulation and melanization of nickel-nitrilotriacetic acid beads, and a significant increase in phenoloxidase activity of plasma. In addition, rIML-4 significantly enhanced the phagocytosis, nodulation, and resistance of O. furnacalis to B. bassiana. Taken together, our results suggest that OfIML-4 potentially works as a PRR to recognize the invading microorganisms, and functions in the innate immune response in O. furnacalis.

5.
Front Public Health ; 12: 1376540, 2024.
Article En | MEDLINE | ID: mdl-38765487

Background: The psychological status of Chinese postgraduate students majoring in stomatology after the COVID-19 restrictions still remains unclear. The objective of this study is to evaluate the mental status through a cross-sectional survey and gather related theoretical evidence for psychological intervention on postgraduate students majoring in stomatology. Methods: An online survey was administered, and subjective well-being, anxiety, stress and depression symptoms were assessed using the 5-item World Health Organization Well-Being Index (WHO-5), item Generalized Anxiety Disorder Scale (GAD-7), 10-item Perceived Stress Scale (PSS-10), and Patient Health Questionnaire-9 (PHQ-9), respectively, wherein suicidal ideation and sleep-related problems were measured with PHQ-9 and Insomnia Severity Index (ISI). Results: A total of 208 participants who completed one questionnaire were considered as valid. It was found that female respondents generally exhibited significantly higher levels of PSS-10, PHQ-9, and GAD-7 scores and shorter physical activity hours than male students. Students from rural areas demonstrated significantly higher levels of PHQ-9, suicidal ideation, and less portion of good or fair family economic support. Additionally, individuals from only-child families reported increased levels of activity hours (1.78 ± 2.07, p = 0.045) and a higher portion (55.10%, p = 0.007) of having clear future plan as compared with multiple-child families. The risk factors for anxiety symptoms (GAD-7 score) were higher scores of PSS-10 (OR = 1.15, 95% CI = 1.09-1.22), PHQ-9 (OR = 1.35, 95% CI = 1.22-1.49), and ISI-7 (OR = 1.14, 95% CI = 1.06-1.23), while owning a clear graduation plan was the protective factor (OR = 0.55, 95% CI = 0.31-0.98). Moreover, the risk factors for depressive symptoms (PHQ-9) included PSS-10 (OR = 1.10, 95% CI = 1.04-1.16), GAD-7 (OR = 1.38, 95% CI = 1.25-1.52), suicidal ideation (OR = 5.66, 95% CI = 3.37-9.51), and ISI-7 (OR = 1.17, 95% CI = 1.09-1.25). Approximately 98.08% of Chinese postgraduates studying stomatology reported experiencing at least moderate stress after the COVID-19 restrictions. Conclusion: Within the limitations of this study, senior students were more inclined to stress, while anxiety symptoms were related to severer levels of stress, depression, and insomnia. Depressive symptoms were associated with higher levels of stress, anxiety, insomnia, suicidal ideation, and lower levels of self-reported well-being. Thus, psychological interventions for postgraduates should be timely and appropriately implemented by strengthening well-being, reasonably planning for the future, and good physique, thereby mitigating the psychological issues after COVID-19 restrictions.


Anxiety , COVID-19 , Depression , Humans , Male , Female , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/psychology , China/epidemiology , Adult , Surveys and Questionnaires , Depression/epidemiology , Anxiety/epidemiology , Stress, Psychological , Mental Health , Suicidal Ideation , Young Adult , SARS-CoV-2 , Students/psychology , East Asian People
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 512-517, 2024 May 15.
Article Zh | MEDLINE | ID: mdl-38802913

Glyceryl phenylbutyrate (GPB) serves as a long-term management medication for Ornithine transcarbamylase deficiency (OTCD), effectively controlling hyperammonemia, but there is a lack of experience in using this medicine in China. This article retrospectively analyzes the case of a child diagnosed with OTCD at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, including a review of related literature. After diagnosis, the patient was treated with GPB, followed by efficacy follow-up and pharmacological monitoring. The 6-year and 6-month-old male patient exhibited poor speech development, disobedience, temper tantrums, and aggressive behavior. Blood ammonia levels peaked at 327 µmol/L; urine organic acid analysis indicated elevated uracil levels; cranial MRI showed extensive abnormal signals in both cerebral hemispheres. Genetic testing revealed de novo mutation in the OTC gene (c.241T>C, p.S81P). Blood ammonia levels were approximately 43, 80, and 56 µmol/L at 1, 2, and 3 months after starting GPB treatment, respectively. During treatment, blood ammonia was well-controlled without drug-related adverse effects. The patient showed improvement in developmental delays, obedience, temperament, and absence of aggressive behavior.


Ornithine Carbamoyltransferase Deficiency Disease , Phenylbutyrates , Humans , Male , Ornithine Carbamoyltransferase Deficiency Disease/drug therapy , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Phenylbutyrates/therapeutic use , Child , Glycerol/analogs & derivatives
7.
Biochem Pharmacol ; 225: 116269, 2024 May 07.
Article En | MEDLINE | ID: mdl-38723723

Antimicrobial peptides (AMPs), which have a low probability of developing resistance, are considered the most promising antimicrobial agents for combating antibiotic resistance. Feleucin-K3 is an amphiphilic cationic AMP that exhibits broad-spectrum antimicrobial activity. In our previous research, the first phenylalanine residue was identified as the critical position affecting its biological activity. Here, a series of Feleucin-K3 analogs containing hydrophobic D-amino acids were developed, leveraging the low sensitivity of proteases to unnatural amino acids and the regulatory effect of hydrophobicity on antimicrobial activity. Among them, K-1dF, which replaced the phenylalanine of Feleucin-K3 with its enantiomer (D-phenylalanine), exhibited potent antimicrobial activity with a therapeutic index of 46.97 and MICs between 4 to 8 µg/ml against both sensitive and multidrug-resistant Acinetobacter baumannii. The introduction of D-phenylalanine increased the salt tolerance and serum stability of Feleucin-K3. Moreover, K-1dF displayed a rapid bactericidal effect, a low propensity to develop resistance, and a synergistic effect when combined with antibiotics. More importantly, it exhibited considerable or superior efficacy to imipenem against pneumonia and skin abscess infection. In brief, the K-1dF obtained by simple and effective modification strategy has emerged as a promising candidate antimicrobial agent for tackling multidrug-resistant Acinetobacter baumannii infections.

8.
J Am Chem Soc ; 146(23): 15833-15842, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38819396

Ruthenium(II) complexes are known to form η6-arene complexes with benzene-containing compounds through π-coordination, a property extensively utilized to initiate reactions not typically observed with free arenes. A prime example is nucleophilic aromatic substitution, where ruthenium-complexed aryl halides undergo nucleophilic attack, allowing the direct synthesis of diverse aromatic compounds by displacing halides with nucleophiles. However, this activation relies on the electron-withdrawing effect of the Ru(II) species, as well as is hindered by the resistance of η6-arenes to arene exchange. In the previous pursuit of catalysis, the emphasis of ligand design has centered on promoting arene exchange. In this study, we extended the ruthenium activation strategy to umpolung substitution reactions of phenols. The amination proceeds through a direct condensation between phenols and amines, with a key intermediate identified as [bis(η5-phenoxo)Ru], which is in situ generated from a commercially available ruthenium catalyst. In comparison with the well-studied cyclopentadienyl (Cp) type ligands, we demonstrated that an η5-phenoxo motif, as a superior alternative to Cp, contributes to the amination of phenols in two crucial ways: its less electron-donating nature enhances the withdrawing effect of the ruthenium unit, facilitating substitution on the phenol complex; its distinctive behavior in arene exchange allows for conducting the amination with a catalytic amount of metal. Additionally, hydrogen bonding, wherein the phenoxo serves as the acceptor, was found to be important for the substitution. The versatility of this ruthenium-catalyzed amination was validated by performing reactions with a diverse array of phenols exhibiting various electronic properties, in combination with a wide range of primary amines. This work exemplifies the expansion of the scope of π-coordination activation in catalysis through innovative ligand development.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124385, 2024 Sep 05.
Article En | MEDLINE | ID: mdl-38714005

A novel colorimetric-fluorescent dual-mode chemosensor (JT5) based on rhodamine B has been produced for monitoring Sn4+ in the DMSO/H2O (4:1, v/v) medium. It has high sensitivity, a low detection limit, a short response time (1 s) and high stability, and can still be maintained after two weeks with the red dual fluorescence/ colorimetric response. Enhancement of red fluorescence (591 nm) and red colorimetric (567 nm) response of JT5 by Sn4+ addition. The electrostatic potential of the sensor JT5 molecule was simulated to speculate on the sensing mechanism, and the IR, mass spectrometry and 1H NMR titration were utilized to further demonstrate that JT5 was coordinated to Sn4+ with a 1:1 type, the rhodamine spironolactam ring of JT5 opens up to form a penta-membered ring with Sn4+, meanwhile, its system may have chelation enhanced fluorescence (CHEF) effect. In addition, theoretical calculations were carried out to give the energy gaps of JT5 and [JT5 + Sn4+] as well as to simulate the electronic properties of the maximal absorption peaks. Notably, the sensor JT5 was successfully applied to monitoring Sn4+ in zebrafish, and the JT5-loaded filter paper provided a solid-state platform for detecting Sn4+ by both naked eye and fluorescent methods. In summary, this work contributes to monitoring Sn4+ in organisms and solid-state materials and promotes understanding of Sn4+ functions in biological systems, environments, and solid-state materials.


Biosensing Techniques , Fluorescent Dyes , Rhodamines , Spectrometry, Fluorescence , Zebrafish , Rhodamines/chemistry , Animals , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Water/chemistry , Colorimetry/methods , Limit of Detection
10.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Article En | MEDLINE | ID: mdl-38679241

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Antihypertensive Agents , Attention Deficit Disorder with Hyperactivity , Behavior, Animal , Captopril , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Rats, Inbred SHR , Animals , Gastrointestinal Microbiome/drug effects , Pregnancy , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/chemically induced , Female , Antihypertensive Agents/pharmacology , Captopril/pharmacology , Male , Rats , Behavior, Animal/drug effects , Labetalol/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Hypertension, Pregnancy-Induced/chemically induced , Dopamine/metabolism
11.
Sci Total Environ ; 927: 172368, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614346

BACKGROUND: Disinfection byproducts (DBPs) have been shown to impair thyroid function in experimental models. However, epidemiological evidence is scarce. METHODS: This study included 1190 women undergoing assisted reproductive technology (ART) treatment from the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. Serum thyrotropin (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) were measured as indicators of thyroid function. FT4/FT3 and TSH/FT4 ratios were calculated as markers of thyroid hormone homeostasis. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two most abundant HAAs, in urine were detected to assess individual DBP exposures. RESULTS: After adjusting for relevant covariates, positive associations were observed between urinary TCAA concentrations and serum TSH and TSH/FT4 levels (e.g., percent change = 5.82 %, 95 % CI: 0.70 %, 11.21 % for TSH), whereas inverse associations were found for serum FT3 and FT4 (e.g., percent change = -1.29 %, 95 % CI: -2.49 %, -0.07 % for FT3). There also was a negative association between urinary DCAA concentration and serum FT4/FT3 (percent change = -2.49 %, 95 % CI: -4.71 %, -0.23 %). These associations were further confirmed in the restricted cubic spline and generalized additive models with linear or U-shaped dose-response relationships. CONCLUSION: Urinary HAAs were associated with altered thyroid hormone homeostasis among women undergoing ART treatment.


Thyroid Gland , Humans , Female , Adult , Thyroxine/blood , Triiodothyronine/blood , Thyrotropin/blood , Thyroid Hormones/blood , Thyroid Function Tests , Disinfectants , Acetates , China
12.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Article En | MEDLINE | ID: mdl-38666497

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Hypertension , Paraventricular Hypothalamic Nucleus , Receptors, G-Protein-Coupled , Taurocholic Acid , Animals , Male , Rats , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
13.
Insect Biochem Mol Biol ; 169: 104125, 2024 Jun.
Article En | MEDLINE | ID: mdl-38616030

Voltage-dependent anion channel 2 (VDAC2) is an important channel protein that plays a crucial role in the host response to viral infection. The receptor for activated C kinase 1 (RACK1) is also a key host factor involved in viral replication. Our previous research revealed that Bombyx mori VDAC2 (BmVDAC2) and B. mori RACK1 (BmRACK1) may interact with Bombyx mori nucleopolyhedrovirus (BmNPV), though the specific molecular mechanism remains unclear. In this study, the interaction between BmVDAC2 and BmRACK1 in the mitochondria was determined by various methods. We found that BmNPV p35 interacts directly with BmVDAC2 rather than BmRACK1. BmNPV infection significantly reduced the expression of BmVDAC2, and activated the mitochondrial apoptosis pathway. Overexpression of BmVDAC2 in BmN cells inhibited BmNPV-induced cytochrome c (cyto c) release, decrease in mitochondrial membrane potential as well as apoptosis. Additionally, the inhibition of cyto c release by BmVDAC2 requires the involvement of BmRACK1 and protein kinase C. Interestingly, overexpression of p35 inhibited cyto c release during mitochondrial apoptosis in a RACK1 and VDAC2-dependent manner. Even the mutant p35, which loses Caspase inhibitory activity, could still bind to VDAC2 and inhibit cyto c release. In summary, our results indicated that BmNPV p35 interacts with the VDAC2-RACK1 complex to regulate apoptosis by inhibiting cyto c release. These findings confirm the interaction between BmVDAC2 and BmRACK1, the interaction between p35 and the VDAC2-RACK1 complex, and a novel target that BmNPV p35 regulates apoptosis in Bombyx mori via interaction with the BmVDAC2-BmRACK1 complex. The result provide an initial exploration of the function of this interaction in the BmNPV-induced mitochondrial apoptosis pathway.


Apoptosis , Bombyx , Insect Proteins , Nucleopolyhedroviruses , Receptors for Activated C Kinase , Animals , Bombyx/virology , Bombyx/metabolism , Bombyx/genetics , Nucleopolyhedroviruses/physiology , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channel 2/genetics , Mitochondria/metabolism
14.
Anal Chem ; 96(18): 7265-7273, 2024 May 07.
Article En | MEDLINE | ID: mdl-38649306

The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.


Copper , Electrochemical Techniques , Luminescent Measurements , Matrix Metalloproteinase 14 , Metal Nanoparticles , Copper/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/analysis , Electrodes , Humans
15.
J Bone Miner Res ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38624186

BACKGROUND: The relationship between socio-economic status and bone-related diseases is attracting increasing attention. Therefore, a bidirectional Mendelian randomization (MR) analysis was performed in this study. METHODS: Genetic data on factors associated with socio-economic status (average total household income before tax, years of schooling completed and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fracture (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses, and multivariable MR was performed to enhance the robustness of our findings. RESULTS: A higher educational attainment was associated with an increased level of eBMD (beta:0.06, 95% CI:0.01-0.10, P = 7.24 × 10-3), and decreased risk of osteoporosis (OR:0.78, 95% CI:0.65-0.94, P = 8.49 × 10-3), spine fracture (OR:0.76, 95% CI:0.66-0.88, P = 2.94 × 10-4), femur fracture (OR:0.78, 95% CI:0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR:0.79, 95% CI:0.70-0.88, P = 2.05 × 10-5), foot fracture (OR:0.78, 95% CI:0.66-0.93, P = 5.92 × 10-3) and wrist-hand fracture (OR:0.83, 95% CI:0.73-0.95, P = 7.15 × 10-3). Further, material deprivation seemed to harm the spine fracture (OR:2.63, 95% CI:1.43-4.85, P = 1.91 × 10-3). A higher level of FN-BMD positively affected increased household income (beta:0.03, 95% CI:0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index (BMI), type 2 diabetes, smoking initiation, and frequency of alcohol intake. CONCLUSIONS: The Mendelian randomization analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings offer valuable insights into the formulation of health guidelines and policy development.


We conducted stratified analyses to explore the causal links between socio-economic status and osteoporosis and various fractures and observed that education significantly reduced risk of osteoporosis and lower eBMD. It also lowered the risks of fractures of spine, femur, lower leg-ankle, foot, and wrist-hand, while material deprivation exhibited positive associations with spine fracture risk. Bidirectional MR analysis showed that an elevated score of FN-BMD was associated with a higher income level. Our study shows the importance of conducting routine BMD estimations and osteoporosis screening, to enhance knowledge and awareness among individuals to promote bone health and prevent fractures.

16.
Opt Express ; 32(7): 11643-11653, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38571006

The radiation characteristics of microalgae are of great significance for the design of photobioreactors and ocean optical remote sensing. Yet the complex structure of microalgae makes it difficult to theoretically predict its radiation characteristics based on traditional Mie theory. In this work, taking Chlamydomonas reinhardtii as an example, a multi-component cell model with a complex structure is proposed, which considers the organelles and shape of microalgae, and the volume change during the production of Chlamydomonas reinhardtii lipids. The theoretical calculation is carried out using the discrete dipole approximation method, and an improved transmission method is used for experimental measurement. The experimental data are compared and analyzed with the multi-component complex structure model, the homogeneous sphere model and the coated sphere model. The results show that the calculation accuracy of the multi-component complex structure model is higher, the error of the scattering cross-section is reduced by more than 8.6% compared with the homogeneous sphere model and coated sphere model, and the absorption cross-section and the scattering phase function are in good agreement with the experimental results. With the increase of lipids, the absorption cross-section and the scattering phase function vary slightly. However, the scattering cross-section has an observed change with increasing wavelength. In addition, the theoretical calculation error can be reduced when the influence of the culture medium is taken into account.

17.
Materials (Basel) ; 17(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38612182

Due to its exceptional qualities, ultra-high-performance concrete (UHPC) has recently become one of the hottest research areas, although the material's significant carbon emissions go against the current development trend. In order to lower the carbon emissions of UHPC, this study suggests a machine learning-based strategy for optimizing the mix proportion of UHPC. To accomplish this, an artificial neural network (ANN) is initially applied to develop a prediction model for the compressive strength and slump flow of UHPC. Then, a genetic algorithm (GA) is employed to reduce the carbon emissions of UHPC while taking into account the strength, slump flow, component content, component proportion, and absolute volume of UHPC as constraint conditions. The outcome is then supported by the results of the experiments. In comparison to the experimental results, the research findings show that the ANN model has excellent prediction accuracy with an error of less than 10%. The carbon emissions of UHPC are decreased to 688 kg/m3 after GA optimization, and the effect of optimization is substantial. The machine learning (ML) model can provide theoretical support for the optimization of various aspects of UHPC.

18.
Int J Womens Health ; 16: 373-384, 2024.
Article En | MEDLINE | ID: mdl-38482271

Background: Research on the risk factors for cervical cancer in Yunnan Province's four characteristic ethnic groups (Han, Bai, Dai, and Hani) is lacking. Objective: To study the risk factors of cervical cancer in four ethnic women in Yunnan Province, and to provide evidence for its prevention. Methods: The cervical cancer patients of Han, Bai, Dai and Hani ethnic groups in Yunnan Province who were first diagnosed in the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center) from January 2011 to December 2020 were selected as the research objects. The 1:1 matched case-control study method was used, and single factor and conditional logistic regression were used for statistical analysis. Results: HPV types 16, 18 and 58 are mostly related with cervical cancer, the younger the age of the last pregnancy, the more times of pregnancy, childbirth and abortion, especially the younger the first marriage age of Bai and Dai, are the risk factors of cervical cancer; the infection of genital tract bacteria, mycoplasma and chlamydia is closely related to the incidence of cervical cancer in four ethnicities. Multifactorial analysis showed that demographic characteristics and environment/behavior were not included in the influencing factors of cervical cancer; among Han, Bai, Dai and Hani ethnic minorities, contraception (OR=0.29, OR=0.03, OR=0.09, OR=0.16, P<0.05) was positive factor, HPV infection (OR=64.77, OR=128.71, OR=71.89, OR=40.07, P<0.01) was a causative factor of cervical cancer. Conclusion: Risk of high parity with cervical cancer could be due to a complex interplay of factors, it is very important to formulate prevention strategies and measures in line with the cervical cancer of Han, Bai, Dai and Hani ethnic groups women in Yunnan Province.

19.
Huan Jing Ke Xue ; 45(3): 1692-1701, 2024 Mar 08.
Article Zh | MEDLINE | ID: mdl-38471881

In rice-vegetable rotation systems in tropical areas, a large amount of nitrate nitrogen accumulates after fertilization in the melon and vegetable season, which leads to the leaching of nitrate nitrogen and a large amount of N2O emission after the seasonal flooding of rice, which leads to nitrogen loss and intensification of the greenhouse effect. How to improve the utilization rate of nitrate nitrogen and reduce N2O emissions has become an urgent problem to be solved. Six treatments were set up [200 mg·kg-1 KNO3 (CK); 200 mg·kg-1 KNO3 + 2% biochar addition (B); 200 mg·kg-1 KNO3+1% peanut straw addition (P); 200 mg·kg-1 KNO3 + 2% biochar + 1% peanut straw addition (P+B); 200 mg·kg-1 KNO3 + 1% rice straw addition (R); 200 mg·kg-1 KNO3 + 2% biochar+1% rice straw addition (R+B)] and cultured at 25℃ for 114 d to explore the effects of organic material addition on greenhouse gas emissions and nitrogen use after flooding in high nitrate nitrogen soil. The results showed that compared with that in CK, adding straw or combining straw with biochar significantly increased soil pH (P<0.05). The B and P treatments significantly increased the cumulative N2O emissions by 41.6% and 28.5% (P<0.05), and the P+B, R, and R+B treatments significantly decreased the cumulative N2O emissions by 14.1%, 24.7%, and 36.7% (P<0.05), respectively. The addition of straw increased the net warming potential of greenhouse gases (NGWP). The addition of coir biochar significantly reduced the effect of straw on NGWP (P<0.05). The combined application of straw and biochar decreased NGWP, and P+B significantly decreased NGWP, but that with R+B was not significant (P>0.05). Adding straw or biochar significantly increased soil microbial biomass carbon (MBC) (P<0.05), and that of P+B was the highest (502.26 mg·kg-1). The combined application of straw and biochar increased soil microbial biomass nitrogen (MBN), and that of P+B was the highest. The N2O emission flux was negatively correlated with pH (P<0.01) and positively correlated with NH4+-N and NO3--N (P<0.01). The cumulative emission of N2O was negatively correlated with MBN (P<0.05). There was a significant negative correlation between NO3--N and MBN (P<0.01), indicating that the reduction in NO3--N was likely to be held by microorganisms, and the increase in the microbial hold of NO3--N also reduced N2O emission. In conclusion, the combined application of peanut straw and coconut shell biochar could significantly inhibit N2O emission and increase soil MBC and MBN, which is a reasonable measure to make full use of nitrogen fertilizer, reduce nitrogen loss, and slow down N2O emission after the season of Hainan vegetables.


Greenhouse Gases , Oryza , Soil/chemistry , Greenhouse Gases/analysis , Vegetables , Agriculture/methods , Nitrates , Nitrogen , Nitrous Oxide/analysis , Charcoal , China , Fertilizers
20.
Int Dent J ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38458846

OBJECTIVES: The aim of this study was to reveal the relationship, if any, between gut microbiota and oral ulcers. METHODS: We performed a 2-sample Mendelian randomization (MR) study to estimate the roles of gut microbiota in mouth ulcers. The summary datasets of gut microbiota were from the largest genome-wide association study (GWAS) conducted by MiBioGen, and data of mouth ulcers were obtained from UK Biobank. Random effect inverse variance-weighted, weighted median, MR Egger, simple mode and weighted mode were used to estimate the relationship. Sensitivity analyses were conducted to assess the heterogeneity and pleiotropy of instrumental variables. MR Steiger filtering was also applied to orient the causal direction. RESULTS: Three gut microbiota taxa were positively associated with mouth ulcers: Holdemania (odds ratio [OR] = 1.005, 95% confidence interval [CI]: 1.001-1.009, P = .019), Oxalobacter (OR = 1.004, 95% CI: 1.000-1.007, P = .032), and Ruminococcaceae UCG011 (OR = 1.006, 95% CI: 1.001-1.011, P = .029), while 4 gut microbiota taxa were negatively associated with mouth ulcers: Actinobacteria (OR = 0.992, 95% CI: 0.985-1.000, P = .042), Lactobacillales (OR = 0.995, 95% CI: 0.990-1.000, P = .034), Oscillospira (OR = 0.990, 95% CI: 0.984-0.997, P = .007) and Phascolarctobacterium (OR = 0.992, 95% CI: 0.986-0.997, P = .003). Sensitivity analyses validated the robustness of the association in between. CONCLUSIONS: This MR study identified a strong association between the quality of gut microbiota and oral ulcers. The findings are likely to expand the therapeutic targets for mouth ulcers.

...