Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.240
Filter
1.
Cancer Cell Int ; 24(1): 221, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937742

ABSTRACT

BACKGROUND: Glioma is considered the most common primary malignant tumor of the central nervous system. Although traditional treatments have not achieved satisfactory outcomes, recently, targeted therapies for glioma have shown promising efficacy. However, due to the single-target nature of targeted therapy, traditional targeted therapies are ineffective; thus, novel therapeutic targets are urgently needed. METHODS: The gene expression data for glioma patients were derived from the GEO (GSE4290, GSE50161), TCGA and CGGA databases. Next, the upregulated genes obtained from the above databases were cross-analyzed, finally, 10 overlapping genes (BIRC5, FOXM1, EZH2, CDK1, KIF11, KIF4A, NDC80, PBK, RRM2, and TOP2A) were ultimately screened and only KIF4A expression has the strongest correlation with clinical characteristics in glioma patients. Futher, the TCGA and CGGA database were utilized to explore the correlation of KIF4A expression with glioma prognosis. Then, qRT-PCR and Western blot was used to detect the KIF4A mRNA and protein expression level in glioma cells, respectively. And WZ-3146, the small molecule inhibitor targeting KIF4A, were screened by Cmap analysis. Subsequently, the effect of KIF4A knockdown or WZ-3146 treatment on glioma was measured by the MTT, EdU, Colony formation assay and Transwell assay. Ultimately, GSEA enrichment analysis was performed to find that the apoptotic pathway could be regulated by KIF4A in glioma, in addition, the effect of WZ-3146 on glioma apoptosis was detected by flow cytometry and Western blot. RESULTS: In the present study, we confirmed that KIF4A is abnormally overexpressed in glioma. In addition, KIF4A overexpression is a key indicator of glioma prognosis; moreover, suppressing KIF4A expression can inhibit glioma progression. We also discovered that WZ-3146, a small molecule inhibitor of KIF4A, can induce apoptosis in glioma cells and exhibit antiglioma effects. CONCLUSION: In conclusion, these observations demonstrated that targeting KIF4A can inhibit glioma progression. With further research, WZ-3146, a small molecule inhibitor of KIF4A, could be combined with other molecular targeted drugs to cooperatively inhibit glioma progression.

2.
Adv Sci (Weinh) ; : e2402616, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828766

ABSTRACT

Although possessing well-defined nanostructures and excellent multi-electron redox properties, polyoxometalate clusters have poor intrinsic electrical conductivity and are prone to aggregation due to large surface energy, which makes them difficult to be fully utilized when applying as electrode materials for lithium-ion batteries. In this paper, monodisperse K7MnV13O38 (MnV13) clusters are achieved by rationally utilizing nano-sized high conductive carbon dots (CDs) as stabilizers. Benefiting from the fully exposed redox sites of MnV13 clusters (high utilization rate) and sufficient interfaces with carbon dots (extra interfacial energy storage), the optimized MnV13/10CDs anode delivers a high discharge capacity up to 1348 mAh g-1 at a current density of 0.1 A g-1 and exhibits superb rate/cycling capabilities. Density functional theory (DFT) calculations verify that ionic archway channels are formed between MnV13 and CDs, eliminating the bandgap and greatly improving the electron/ion conductivity of MnV13 and CDs. This paper paves a brand-new way for synthesis of monodisperse clusters and maximization of extra interfacial energy storage.

3.
Talanta ; 277: 126325, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38833906

ABSTRACT

Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.

4.
Adv Mater ; : e2407705, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925587

ABSTRACT

Polyoxometalates (POMs) have been considered as one of the most promising anode candidates for lithium-ion batteries (LIBs) in virtue of their high theoretical capacity and reversible multielectron redox properties. However, the poor intrinsic electronic conductivity, low specific surface area and high solubility in organic electrolytes hinder their widespread applications in LIBs. Herein, a novel hybrid nanomaterial is synthesized by co-assembling POMs and porphyrins (PMo12/CoTPyP) through a facile solvothermal method. The POMs clusters are stabilized by porphyrin units through electrostatic interactions, which simultaneously realizes the uniform dispersion of POMs and porphyrin units. Benefiting from the generated sub-1 nm channels for fast ion transport and the synergistic effect between evenly distributed PMo12 clusters and high-conductive CoTPyP units, the LIB based on the optimized PMo12/CoTPyP anode exhibits significant improved Li+ storage capability as well as superior rate and cycling performance. The results of density functional theory (DFT) simulations further reveal that the co-assembly of PMo12 and CoTPyP can accelerate the mobility of Li+ and electrons, which in turn promotes the enhancement of LIBs performance. This work paves a strategy for synthesizing POMs-based anode materials with simultaneously high dispersibility, redox activity and stability. This article is protected by copyright. All rights reserved.

5.
Int J Surg ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896853

ABSTRACT

BACKGROUND: Current prognostic models have limited predictive abilities for the growing number of localized (stage I-III) ccRCCs. It is therefore crucial to explore novel preoperative recurrence prediction models to accurately stratify patients and optimize clinical decisions. This purpose of this study was to develop and externally validate a CT-based deep learning (DL) model for pre-surgical disease-free survival (DFS) prediction. METHODS: Patients with localized ccRCC were retrospectively enrolled from six independent medical centers. Three-dimensional (3D) tumor regions from CT images were utilized as input to architect a ResNet 50 model, which outputted DL computed risk score (DLCR) of each patient for DFS prediction later. The predictive performance of DLCR was assessed and compared to the radiomics model (Rad-Score), clinical model we built and two existing prognostic models (UISS and Leibovich). The complementary value of DLCR to the UISS, Leibovich, as well as Rad-Score were evaluated by stratified analysis. RESULTS: 707 patients with localized ccRCC were finally enrolled for models' training and validating. The DLCR we established can perfectly stratify patients into low-, intermediate- and high-risks, and outperformed the Rad-Score, clinical model, UISS and Leibovich score in DFS prediction, with a C-index of 0.754 (0.689-0.821) in the external testing set. Furthermore, the DLCR presented excellent risk stratification capacity in subgroups defined by almost all clinic-pathological features. Moreover, patients in the UISS/Leibovich score/Rad-Score stratified low-risk but DLCR-defined intermediate- and high-risk groups were significantly more likely to experience ccRCC recurrences than those of intermediate- and high-risk in DLCR determined low-risk (all Log-rank P values<0.05). CONCLUSIONS: Our deep learning model, derived from preoperative CT, is superior to radiomics and current models in precisely DFS predicting of localized ccRCC, and can provide complementary values to them, which may assist more informed clinical decisions and adjuvant therapies adoptions.

6.
World J Clin Cases ; 12(17): 2976-2982, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38898850

ABSTRACT

BACKGROUND: Diabetic foot ulcers (DFUs) are a common complication of diabetes, often leading to severe infections, amputations, and reduced quality of life. The current standard treatment protocols for DFUs have limitations in promoting efficient wound healing and preventing complications. A comprehensive treatment approach targeting multiple aspects of wound care may offer improved outcomes for patients with DFUs. The hypothesis of this study is that a comprehensive treatment protocol for DFUs will result in faster wound healing, reduced amputation rates, and improved overall patient outcomes compared to standard treatment protocols. AIM: To compare the efficacy and safety of a comprehensive treatment protocol for DFUs with those of the standard treatment protocol. METHODS: This retrospective study included 62 patients with DFUs, enrolled between January 2022 and January 2024, randomly assigned to the experimental (n = 32) or control (n = 30) group. The experimental group received a comprehensive treatment comprising blood circulation improvement, debridement, vacuum sealing drainage, recombinant human epidermal growth factor and anti-inflammatory dressing, and skin grafting. The control group received standard treatment, which included wound cleaning and dressing, antibiotics administration, and surgical debridement or amputation, if necessary. Time taken to reduce the white blood cell count, number of dressing changes, wound healing rate and time, and amputation rate were assessed. RESULTS: The experimental group exhibited significantly better outcomes than those of the control group in terms of the wound healing rate, wound healing time, and amputation rate. Additionally, the comprehensive treatment protocol was safe and well tolerated by the patients. CONCLUSION: Comprehensive treatment for DFUs is more effective than standard treatment, promoting granulation tissue growth, shortening hospitalization time, reducing pain and amputation rate, improving wound healing, and enhancing quality of life.

7.
Adv Nutr ; 15(7): 100240, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734077

ABSTRACT

The vitamin E family contains α-tocopherol (αT), ßT, γT, and δT and α-tocotrienol (TE), ßTE, γTE, and δTE. Research has revealed distinct roles of these vitamin E forms in prostate cancer (PCa). The ATBC trial showed that αT at a modest dose significantly decreased PCa mortality among heavy smokers. However, other randomized controlled trials including the Selenium and Vitamin E Cancer Prevention Trial (SELECT) indicate that supplementation of high-dose αT (≥400 IU) does not prevent PCa among nonsmokers. Preclinical cell and animal studies also do not support chemopreventive roles of high-dose αT and offer explanations for increased incidence of early-stage PCa reported in the SELECT. In contrast, accumulating animal studies have demonstrated that γT, δT, γTE, and δTE appear to be effective for preventing early-stage PCa from progression to adenocarcinoma in various PCa models. Existing evidence also support therapeutic roles of γTE and its related combinations against advanced PCa. Mechanistic and cell-based studies show that different forms of vitamin E display varied efficacy, that is, δTE ≥ γTE > δT ≥ γT >> αT, in inhibiting cancer hallmarks and enabling characteristics, including uncontrolled cell proliferation, angiogenesis, and inflammation possibly via blocking 5-lipoxygenase, nuclear factor κB, hypoxia-inducible factor-1α, modulating sphingolipids, and targeting PCa stem cells. Overall, existing evidence suggests that modest αT supplement may be beneficial to smokers and γT, δT, γTE, and δTE are promising agents for PCa prevention for modest-risk to relatively high-risk population. Despite encouraging preclinical evidence, clinical research testing γT, δT, γTE, and δTE for PCa prevention is sparse and should be considered.

8.
Biomater Adv ; 161: 213901, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776602

ABSTRACT

The permeability and the effective diffusivity of a porous scaffold are critical in the bone-ingrowth process. However, design guidelines for porous structures are still lacking due to inadequate understanding of the complex physiological processes involved. In this study, a model integrating the fundamental biological processes of bone regeneration was constructed to investigate the roles of permeability and effective diffusivity in regulating bone deposition in scaffolds. The in silico analysis results were confirmed in vivo by examining bone depositions in three diamond lattice scaffolds manufactured using selective laser melting. The findings show that the scaffolds with better permeability and effective diffusivity had deeper bone ingrowth and greater bone volume. Compared to permeability, effective diffusivity exhibited greater sensitivity to the orientation of porous structures, and bone ingrowth was deeper in the directions with higher effective diffusivity in spite of identical pore size. A 4.8-fold increase in permeability and a 1.6-fold increase in effective diffusivity by changing the porous structure led to a 1.5-fold increase in newly formed bone. The effective diffusivity of the porous scaffold affects the distribution of osteogenic growth factor, which in turn impacts cell migration and bone deposition through chemotaxis effects. Therefore, effective diffusivity may be a more suitable indicator for porous scaffolds because our study shows changes in this parameter determine changes in bone distribution and bone volume.


Subject(s)
Bone Regeneration , Osteogenesis , Permeability , Tissue Scaffolds , Tissue Scaffolds/chemistry , Porosity , Bone Regeneration/drug effects , Bone Regeneration/physiology , Animals , Osteogenesis/drug effects , Osteogenesis/physiology , Bone and Bones , Computer Simulation , Tissue Engineering/methods
9.
Cell Rep Med ; 5(6): 101588, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38781961

ABSTRACT

Tibial cortex transverse distraction is a surgical method for treating severe diabetic foot ulcers (DFUs), but the underlying mechanism is unclear. We show that antioxidant proteins and small extracellular vesicles (sEVs) with multiple-tissue regenerative potential are released during bone transport (BT) in humans and rats. These vesicles accumulate in diabetic wounds and are enriched with microRNAs (miRNAs) (e.g., miR-494-3p) that have high regenerative activities that improve the circulation of ischemic lower limbs while also promoting neovascularization, fibroblast migration, and nerve fiber regeneration. Deletion of miR-494-3p in rats reduces the beneficial effects of BT on diabetic wounds, while hydrogels containing miR-494-3p and reduced glutathione (GSH) effectively repair them. Importantly, the ginsenoside Rg1 can upregulate miR-494-3p, and a randomized controlled trial verifies that the regimen of oral Rg1 and GSH accelerates wound healing in refractory DFU patients. These findings identify potential functional factors for tissue regeneration and suggest a potential therapy for DFUs.


Subject(s)
Wound Healing , Animals , Wound Healing/drug effects , Humans , Rats , Male , MicroRNAs/metabolism , MicroRNAs/genetics , Extracellular Vesicles/metabolism , Rats, Sprague-Dawley , Diabetic Foot/metabolism , Diabetic Foot/pathology , Diabetes Mellitus, Experimental/metabolism , Glutathione/metabolism , Middle Aged , Regeneration/drug effects , Female , Bone and Bones/metabolism
11.
Phys Rev Lett ; 132(16): 166901, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701473

ABSTRACT

Twisted bilayer graphene (TBG) is a recently discovered two-dimensional superlattice structure which exhibits strongly correlated quantum many-body physics, including strange metallic behavior and unconventional superconductivity. Most of TBG exotic properties are connected to the emergence of a pair of isolated and topological flat electronic bands at the so-called magic angle, θ≈1.05°, which are nevertheless very fragile. In this work, we show that, by employing chiral optical cavities, the topological flat bands can be stabilized away from the magic angle in an interval of approximately 0.8°<θ<1.3°. As highlighted by a simplified theoretical model, time reversal symmetry breaking (TRSB), induced by the chiral nature of the cavity, plays a fundamental role in flattening the isolated bands and gapping out the rest of the spectrum. Additionally, TRSB suppresses the Berry curvature and induces a topological phase transition, with a gap closing at the Γ point, towards a band structure with two isolated flat bands with Chern number equal to 0. The efficiency of the cavity is discussed as a function of the twisting angle, the light-matter coupling and the optical cavity characteristic frequency. Our results demonstrate the possibility of engineering flat bands in TBG using optical devices, extending the onset of strongly correlated topological electronic phases in moiré superlattices to a wider range in the twisting angle.

12.
Insights Imaging ; 15(1): 121, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763985

ABSTRACT

OBJECTIVES: To develop an interactive, non-invasive artificial intelligence (AI) system for malignancy risk prediction in cystic renal lesions (CRLs). METHODS: In this retrospective, multicenter diagnostic study, we evaluated 715 patients. An interactive geodesic-based 3D segmentation model was created for CRLs segmentation. A CRLs classification model was developed using spatial encoder temporal decoder (SETD) architecture. The classification model combines a 3D-ResNet50 network for extracting spatial features and a gated recurrent unit (GRU) network for decoding temporal features from multi-phase CT images. We assessed the segmentation model using sensitivity (SEN), specificity (SPE), intersection over union (IOU), and dice similarity (Dice) metrics. The classification model's performance was evaluated using the area under the receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA). RESULTS: From 2012 to 2023, we included 477 CRLs (median age, 57 [IQR: 48-65]; 173 men) in the training cohort, 226 CRLs (median age, 60 [IQR: 52-69]; 77 men) in the validation cohort, and 239 CRLs (median age, 59 [IQR: 53-69]; 95 men) in the testing cohort (external validation cohort 1, cohort 2, and cohort 3). The segmentation model and SETD classifier exhibited excellent performance in both validation (AUC = 0.973, ACC = 0.916, Dice = 0.847, IOU = 0.743, SEN = 0.840, SPE = 1.000) and testing datasets (AUC = 0.998, ACC = 0.988, Dice = 0.861, IOU = 0.762, SEN = 0.876, SPE = 1.000). CONCLUSION: The AI system demonstrated excellent benign-malignant discriminatory ability across both validation and testing datasets and illustrated improved clinical decision-making utility. CRITICAL RELEVANCE STATEMENT: In this era when incidental CRLs are prevalent, this interactive, non-invasive AI system will facilitate accurate diagnosis of CRLs, reducing excessive follow-up and overtreatment. KEY POINTS: The rising prevalence of CRLs necessitates better malignancy prediction strategies. The AI system demonstrated excellent diagnostic performance in identifying malignant CRL. The AI system illustrated improved clinical decision-making utility.

13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 570-575, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752243

ABSTRACT

Objective: To explore the impact of anemia on the incidence of perioperative lower limb deep vein thrombosis (DVT) in patients undergoing total hip arthroplasty (THA). Methods: A retrospective analysis was conducted on clinical data of 1 916 non-fracture patients who underwent THA between September 2015 and December 2021, meeting the selection criteria. Among them, there were 811 male and 1 105 female patients, aged between 18 and 94 years with an average of 59.2 years. Among the patients, 213 were diagnosed with anemia, while 1 703 were not. Preoperative DVT was observed in 55 patients, while 1 861 patients did not have DVT preoperatively (of which 75 patients developed new-onset DVT postoperatively). Univariate analysis was performed on variables including age, gender, body mass index (BMI), diabetes, hypertension, history of tumors, history of thrombosis, history of smoking, revision surgery, preoperative D-dimer positivity (≥0.5 mg/L), presence of anemia, operation time, intraoperative blood loss, transfusion requirement, and pre- and post-operative levels of red blood cells, hemoglobin, hematocrit, and platelets. Furthermore, logistic regression was utilized for multivariate analysis to identify risk factors associated with DVT formation. Results: Univariate analysis showed that age, gender, hypertension, revision surgery, preoperative levels of red blood cells, preoperative hemoglobin, preoperative D-dimer positivity, and anemia were influencing factors for preoperative DVT ( P<0.05). Further logistic regression analysis indicated that age (>60 years old), female, preoperative D-dimer positivity, and anemia were risk factors for preoperative DVT ( P<0.05). Univariate analysis also revealed that age, female, revision surgery, preoperative D-dimer positivity, anemia, transfusion requirement, postoperative level of red blood cells, and postoperative hemoglobin level were influencing factors for postoperative new-onset DVT ( P<0.05). Further logistic regression analysis indicated that age (>60 years old), female, and revision surgery were risk factors for postoperative new-onset DVT ( P<0.05). Conclusion: The incidence of anemia is higher among patients with preoperative DVT for THA, and anemia is an independent risk factor for preoperative DVT occurrence in THA. While anemia may not be an independent risk factor for THA postoperative new-onset DVT, the incidence of anemia is higher among patients with postoperative new-onset DVT.


Subject(s)
Anemia , Arthroplasty, Replacement, Hip , Lower Extremity , Postoperative Complications , Venous Thrombosis , Humans , Venous Thrombosis/etiology , Venous Thrombosis/epidemiology , Arthroplasty, Replacement, Hip/adverse effects , Female , Male , Middle Aged , Retrospective Studies , Aged , Anemia/epidemiology , Anemia/etiology , Incidence , Risk Factors , Lower Extremity/blood supply , Adult , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Aged, 80 and over , Adolescent , Perioperative Period , Young Adult , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism
14.
Sci China Life Sci ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763998

ABSTRACT

Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis. Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability. Bub1 is essential for the mitotic centromere dynamics, yet the underlying molecular mechanisms remain largely unclear. Here, we demonstrate that TIP60 acetylates Bub1 at K424 and K431 on kinetochores in early mitosis. This acetylation increases the kinase activity of Bub1 to phosphorylate centromeric histone H2A at T120 (H2ApT120), which recruits Aurora B and Shugoshin 1 (Sgo1) to regulate centromere integrity, protect centromeric cohesion, and ensure the subsequent faithful chromosome segregation. Expression of the non-acetylated Bub1 mutant reduces its kinase activity, decreases the level of H2ApT120, and disrupts the recruitment of centromere proteins and chromosome congression, leading to genomic instability of daughter cells. When cells exit mitosis, HDAC1-regulated deacetylation of Bub1 decreases H2ApT120 levels and thereby promotes the departure of centromeric CPC and Sgo1, ensuring timely centromeres disassembly. Collectively, our results reveal a molecular mechanism by which the acetylation and deacetylation cycle of Bub1 modulates the phosphorylation of H2A at T120 for recruitment of Aurora B and Sgo1 to the centromeres, ensuring faithful chromosome segregation during mitosis.

15.
Nat Commun ; 15(1): 4416, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789426

ABSTRACT

Ferroelectric materials, whose electrical polarization can be switched under external stimuli, have been widely used in sensors, data storage, and energy conversion. Molecular orbital breaking can result in switchable structural and physical bistability in ferroelectric materials as traditional spatial symmetry breaking does. Differently, molecular orbital breaking interprets the phase transition mechanism from the perspective of electronics and sheds new light on manipulating the physical properties of ferroelectrics. Here, we synthesize a pair of organosilicon Schiff base ferroelectric crystals, (R)- and (S)-N-(3,5-di-tert-butylbenzylidene)-1-((triphenylsilyl)oxy)ethanamine, which show optically controlled phase transition accompanying the molecular orbital breaking. The molecular orbital breaking is manifested as the breaking and reformation of covalent bonds during the phase transition process, that is, the conversion between C = N and C-O in the enol form and C-N and C = O in the keto form. This process brings about photo-mediated bistability with multiple physical channels such as dielectric, second-harmonic generation, and ferroelectric polarization. This work further explores this newly developed mechanism of ferroelectric phase transition and highlights the significance of photo-mediated ferroelectric materials for photo-controlled smart devices and bio-sensors.

16.
MycoKeys ; 105: 155-178, 2024.
Article in English | MEDLINE | ID: mdl-38783906

ABSTRACT

Four new wood-inhabiting fungi, Trechisporaalbofarinosa, T.bisterigmata, T.pileata and T.wenshanensisspp. nov., are proposed based on a combination of morphological features and molecular evidence. Trechisporaalbofarinosa is characterized by the farinose basidiomata with flocculence hymenial surface, a monomitic hyphal system with clamped generative hyphae, and ellipsoid, warted basidiospores. Trechisporabisterigmata is characterized by the membranous basidiomata with odontioid hymenial surface, rhizomorphic sterile margin, barrelled basidia and subglobose to broad ellipsoid, smooth basidiospores. Trechisporapileata is characterized by the laterally contracted base, solitary or imbricate basidiomata, fan shaped pileus, radially striate-covered surface with appressed scales, odontioid hymenophore surface, and subglobose to broad ellipsoid, thin-walled, smooth basidiospores. Trechisporawenshanensis is characterized by a cottony basidiomata with a smooth hymenial surface, and ellipsoid, thin-walled, warted basidiospores. Sequences of ITS and LSU marker of the studied samples were generated, and phylogenetic analyses were performed with the maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic tree inferred from the ITS+nLSU sequences highlighted that four new species were grouped into the genus Trechispora.

17.
Nat Aging ; 4(5): 664-680, 2024 May.
Article in English | MEDLINE | ID: mdl-38760576

ABSTRACT

Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.


Subject(s)
Alternative Splicing , DEAD-box RNA Helicases , Fibrosis , G-Quadruplexes , Osteoarthritis , Animals , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Mice , Osteoarthritis/pathology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Fibrosis/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Male
19.
Adv Mater ; 36(26): e2403803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598181

ABSTRACT

Aqueous zinc-ion batteries are attractive post-lithium battery technologies for grid-scale energy storage because of their inherent safety, low cost and high theoretical capacity. However, their practical implementation in wide-temperature surroundings persistently confronts irregular zinc electrodeposits and parasitic side reactions on metal anode, which leads to poor rechargeability, low Coulombic efficiency and short lifespan. Here, this work reports lamellar nanoporous Cu/Al2Cu heterostructure electrode as a promising anode host material to regulate high-efficiency and dendrite-free zinc electrodeposition and stripping for wide-temperatures aqueous zinc-ion batteries. In this unique electrode, the interconnective Cu/Al2Cu heterostructure ligaments not only facilitate fast electron transfer but work as highly zincophilic sites for zinc nucleation and deposition by virtue of local galvanic couples while the interpenetrative lamellar channels serving as mass transport pathways. As a result, it exhibits exceptional zinc plating/stripping behaviors in aqueous hybrid electrolyte of diethylene glycol dimethyl ether and zinc trifluoromethanesulfonate at wide temperatures ranging from 25 to -30 °C, with ultralow voltage polarizations at various current densities and ultralong lifespan of >4000 h. The outstanding electrochemical properties enlist full cell of zinc-ion batteries constructed with nanoporous Cu/Al2Cu and ZnxV2O5/C to maintain high capacity and excellent stability for >5000 cycles at 25 and -30 °C.

20.
Mycopathologia ; 189(3): 33, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627263

ABSTRACT

The cutaneous fungal infections in male genitalia are relatively rare, and often present with various atypical clinical symptoms. It was mainly reported in a small number of case reports, while data with large number of patients were rarely reported. In this study, we reported 79 male patients with cutaneous fungal infections on scrotum or penis. The fungal infections were confirmed by microscopic examination directly and fungus culture. Clinical characteristics and predisposing factors were also collected. Of these 79 patients, 72 has lesions on scrotum, 5 on penis and 2 on both scrotum and penis. Trichophyton (T.) rubrum is the most common pathogen, found in 50 (67.6%) patients, which presented diverse clinical manifestation such as majorly erythematous, dry diffused scaly lesions without a clear border, slightly powdery and scutular scalings. Candida (C.) albicans is the secondly common pathogen, found in 21 (28.4%) patients, which also presented diverse lesions such as erythematous with dry whitish scaly lesions and erythematous erosion. The predisposing factors mainly included concomitant fungal infections on sites other than genitalia, especially inguinal region (tinea cruris), application of corticosteroid and high moisture. In conclusion, cutaneous fungal infections in male genitalia could be caused by different fungi, showed atypical or mild clinical appearances in most cases and might be a fungus reservoir, emphasizing the necessity to timely perform the fungi examinations and corresponding therapy.


Subject(s)
Dermatomycoses , Humans , Male , Dermatomycoses/pathology , Skin/pathology , Trichophyton , Microscopy , Scrotum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...