Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(25): 11523-11530, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38860921

ABSTRACT

Circularly polarized phosphorescent materials, based on host-guest complexation, have received significant attention due to their outstanding emission performance in solutions. Recent studies have primarily focused on macrocyclic host-guest complexes. To broaden the scope of this research, there is a keen pursuit of developing novel chiral phosphorescent host-guest systems. Metallotweezers with square-planar d8 transition metal complexes emerge as promising candidates for achieving this objective. Specifically, metallotweezers, comprising platinum(II) terpyridine and gold(III) diphenylpyridine pincers on a diphenylpyridine scaffold, have been designed and synthesized. Due to the preorganization effect rendered by the diphenylpyridine scaffold, the resulting metallotweezers are capable of complexing with each other and forming quadruple stacking structures. The phosphorescent emission is enhanced owing to the synergistic rigidifying and shielding effects. Meanwhile, the steric effect of chiral (1R) pinene units on the platinum(II) terpyridine pincers results in a stereospecific twist for the quadruple stacking structures. Thus, the chirality transfers from the molecular to the supramolecular level. By a combination of phosphorescent enhancement and supramolecular chirality for the clipping complex, circularly polarized phosphorescent emission is achieved. Overall, noncovalent clipping of metallotweezers exemplified in the current study presents a novel and effective approach toward solution-processable circularly polarized phosphorescent materials.

2.
Chem Commun (Camb) ; 59(6): 744-747, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36541365

ABSTRACT

Optically active platinum(II) metallotweezers demonstrate both self-complexation and host-guest complexation capabilities, leading to two distinct supramolecular chirogenic signals in the visible region.


Subject(s)
Platinum
3.
Inorg Chem ; 61(18): 7111-7119, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35482062

ABSTRACT

Phosphorescent host-guest systems have attracted considerable attention because of their intriguing properties and diverse applications. In this study, a polyhedral oligomeric silsesquioxane-functionalized gold(III) tweezer receptor has been designed and synthesized. It is capable of sandwiching platinum(II) terpyridine compounds into its cavity with a high noncovalent binding affinity (association constants: ∼105 M-1 in chloroform). The resulting heterometallic host-guest complexes exhibit enhanced phosphorescent emission compared with those of the individual species in chloroform, thanks to the prevention of vibration and rotation upon noncovalent complexation. They can further assemble into nanospheres in chloroform/diethyl ether (1:9, v/v) owing to phase segregation between the metallotweezer/guest motif and the peripheral polyhedral oligomeric silsesquioxane unit. When terpyridine platinum(II) chloride serves as the complementary guest, the resulting noncovalent system displays an intraligand emission at the individual host-guest complexed state yet excimeric emission at the supramolecular assembled state, yielding the phosphorescent solvatochromic behaviors. Overall, the polyhedral oligomeric silsesquioxane-functionalized metallotweezer combines guest encapsulation and supramolecular assembly capabilities, which provides new avenues for color-tunable phosphorescent materials.

4.
Angew Chem Int Ed Engl ; 61(2): e202110766, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34714571

ABSTRACT

Efficient synthesis of cyclic polymers has received much attention in polymer chemistry field. Although photochemical cycloaddition of terminal π-bonded units provides a plausible way toward cyclic polymerization, it remains challenging to avoid side reactions by manipulating the reaction selectivity. Herein supramolecular confinement has been developed as a promising strategy to address this issue, by introducing highly directional hydrogen bonds to the photo-reactive cyanostilbenes. The cyanostilbenes units on both ends of a telechelic macromonomer are orientationally aligned with high local concentrations, yielding [2+2] photo-cycloaddition products upon 430 nm light irradiation. It leads to the formation of cyclic polymers in the self-assembled state, in stark contrast to Z-E isomerization of cyanostilbenes in the monomeric state. Overall, supramolecular confinement effect exemplified in the current study provides new avenues toward cyclic topological polymers with high synthetic efficiency.

5.
Chem Commun (Camb) ; 57(90): 11996-11999, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34709245

ABSTRACT

A [2.2]paracyclophane-bridged bimetallic alkynylplatinum(II) terpyridyl complex displays severe emission quenching due to the presence of intramolecular π-π interactions. It undergoes an adaptive conformational change upon recognizing Ag+, which attenuates the intramolecular stacking strength and thereby exhibits "turn-on" emission character.

6.
Mikrochim Acta ; 185(10): 486, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30276484

ABSTRACT

A composite was prepared from a Co(II)-based zeolitic imidazolate framework (ZIF-67) and graphene oxide (GO) by an in situ growth method. The material was electrodeposited on a glassy carbon electrode (GCE). The modified GCE was used for the simultaneous voltammetric determination of dopamine (DA) and uric acid (UA), typically at working potentials of 0.11 and 0.25 V (vs. SCE). The morphology and structure of the nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The modified electrode exhibits excellent electroanalytical performance for DA and UA owing to the synergistic effect of the high electrical conductivity of GO and the porosity of ZIF-67. By applying differential pulse voltammetry, a linear response is found for DA in the 0.2 to 80 µM concentration range, and for UA between 0.8 and 200 µM, with detection limits of 50 and 100 nM (at S/N = 3), respectively. Further studies were performed on the effect of potential interferents, and on electrode stability and reproducibility. The modified GCE was applied to the simultaneous detection of DA and UA in spiked human urine and gave satisfying recoveries. Graphical abstract Schematic of the preparation procedure of GO-ZIF67 and electrochemical reaction mechanisms of UA and DA at the GO-ZIF67-modified glassy carbon electrode (GCE). GO: graphene oxide; ZIF-67: Co(II)-based zeolitic imidazolate framework.


Subject(s)
Carbon/chemistry , Dopamine/analysis , Electrochemistry/instrumentation , Graphite/chemistry , Organometallic Compounds/chemistry , Oxides/chemistry , Uric Acid/analysis , Cobalt/chemistry , Dopamine/urine , Electrodes , Humans , Limit of Detection , Porosity , Uric Acid/urine
SELECTION OF CITATIONS
SEARCH DETAIL