Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891324

ABSTRACT

To achieve higher economic returns, we employ inexpensive valley electricity for night-time supplementary lighting (NSL) of tomato plants, investigating the effects of various durations of NSL on the growth, yield, and quality of tomato. Tomato plants were treated with supplementary light for a period of 0 h, 3 h, 4 h, and 5 h during the autumn-winter season. The findings revealed superior growth and yield of tomato plants exposed to 3 h, 4 h, and 5 h of NSL compared to their untreated counterparts. Notably, providing lighting for 3 h demonstrated greater yields per plant and per trough than 5 h exposure. To investigate if a reduced duration of NSL would display similar effects on the growth and yield of tomato plants, tomato plants received supplementary light for 0 h, 1 h, 2 h, and 3 h at night during the early spring season. Compared to the control group, the stem diameter, chlorophyll content, photosynthesis rate, and yield of tomatoes significantly increased upon supplementation with lighting. Furthermore, the input-output ratios of 1 h, 2 h, and 3 h NSL were calculated as 1:10.11, 1:4.38, and 1:3.92, respectively. Nonetheless, there was no detectable difference in yield between the 1 h, 2 h, and 3 h NSL groups. These findings imply that supplemental LED lighting at night affects tomato growth in the form of light signals. Night-time supplemental lighting duration of 1 h is beneficial to plant growth and yield, and its input-output ratio is the lowest, which is an appropriate NSL mode for tomato cultivation.

2.
J Nanobiotechnology ; 22(1): 268, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764056

ABSTRACT

The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.


Subject(s)
Cold Temperature , Cucumis sativus , Iron , Seedlings , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Cucumis sativus/drug effects , Seedlings/growth & development , Seedlings/metabolism , Seedlings/drug effects , Iron/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Germination/drug effects , Hydroxides/pharmacology , Hydroxides/metabolism , Fertilizers , Gene Expression Regulation, Plant/drug effects , Nanoparticles/chemistry , Stress, Physiological , Magnesium/metabolism
3.
Nanoscale Horiz ; 9(6): 1052, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38656282

ABSTRACT

Correction for 'Pickering emulsion templated proteinaceous microparticles as glutathione-responsive carriers for endocytosis in tumor cells' by Weijie Jiang et al., Nanoscale Horiz., 2024, 9, 536-543, https://doi.org/10.1039/D3NH00551H.

4.
Polymers (Basel) ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475330

ABSTRACT

Microalgae are highly regarded as ideal materials for the creation of liquid biofuels and have substantial potential for growth and utilization. However, traditional storage and culture methods for microalgae are plagued by challenges such as uncontrolled growth, bacterial contamination, and self-shading among algae. These issues severely impede the photosynthetic process and the efficient extraction of biomass energy. This study tackles these problems by utilizing magnetic hydrophobic protein particles to stabilize water-in-oil Pickering emulsions. This allows for the micro-compartment storage and magnetic transfer of algae. Additionally, the successful encapsulation of Chlorella cells in high-internal-phase water-in-oil Pickering emulsions effectively mitigates the settling problem of Chlorella cells in the liquid phase, thereby enabling the potential use of Pickering emulsions for the confined cultivation of microalgae.

5.
Front Biosci (Landmark Ed) ; 29(2): 57, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38420795

ABSTRACT

BACKGROUND: Colocasia esculenta L. Schott is a main traditional root crop in China, serving as an important vegetable and staple food. Drought stress plays vital role on the growth and development of taro corm. METHODS: Two different varieties of taro in Jiangsu were selected: Xiangsha taro and Longxiang taro. The accumulation characteristics, morphological structure, and physicochemical properties of taro corm starch were studied by microscopic observation, particle size analysis, and X-ray diffractometer (XRD) analysis. Transcriptome analyses were used to identify the related genes of taro corm under drought stress. RESULTS: During the growth of taro, the number of amyloplasts showed an obvious increasing trend and shifted from being dispersed throughout the cells to being gathered on one side of the cells, and morphological observations showed that smaller granular distribution gradually changed to a larger lumpy distribution. The particle size of Longxiang taro is smaller than that of Xiangsha taro. Under drought stress conditions, the occurrence of starch grains and corm size were inhibited in Xiangsha taro. Transcriptome sequencing of drought-stressed taro corms showed that the enzymes related to starch synthesis were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of drought-stressed taro corms showed that drought affected hormone signal transduction, material metabolism, drought stress tolerance, plant growth and development, and stress resistance, which triggered the plant drought adaptive response. CONCLUSIONS: Drought stress inhibits starch accumulation in taro.


Subject(s)
Colocasia , Starch , Starch/chemistry , Colocasia/genetics , Colocasia/chemistry , Droughts , Food , China
6.
Nanoscale Horiz ; 9(4): 536-543, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38390971

ABSTRACT

The use of glucose oxidase (GOx) to disrupt glucose supply has been identified as a promising strategy in cancer starvation therapy. However, independent delivery of GOx is prone to degradation upon exposure to biological conditions and may cause damage to blood vessels and normal organs during transportation. Although some carriers can protect GOx from the surrounding environment, the harsh preparation conditions may compromise its activity. Moreover, the commonly used materials often exhibit poor biocompatibility and possess certain cytotoxicity. To address this issue, we developed a gentle and efficient method based on Pickering emulsion templates to synthesize protein-based microparticles using zein as the matrix material. These microparticles have high stability and can be tailored to efficiently encapsulate biomolecules while preserving their activity. Moreover, the zein-based microparticles can be triggered to release biomolecules in tumor cells under high glutathione levels, demonstrating excellent responsiveness, biocompatibility, and low cytotoxicity. Additionally, when loaded with GOx, these protein-based microparticles effectively deprive tumor cells of nutrients and induce apoptosis by generating high levels of H2O2, thereby exhibiting enhanced anticancer properties.


Subject(s)
Zein , Emulsions , Hydrogen Peroxide , Endocytosis , Glutathione , Glucose Oxidase
7.
Plant J ; 118(3): 696-716, 2024 May.
Article in English | MEDLINE | ID: mdl-38193347

ABSTRACT

The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high-stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U-Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U-Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10-day-old seedlings. The root angle had the strongest correlation with yield, and the shallow- and steep-angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high-throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high-yield RSA in crops such as cucumbers.


Subject(s)
Cucumis sativus , Deep Learning , Plant Roots , Seedlings , Cucumis sativus/growth & development , Cucumis sativus/physiology , Plant Roots/growth & development , Plant Roots/anatomy & histology , Plant Roots/physiology , Seedlings/growth & development , Seedlings/physiology , Image Processing, Computer-Assisted/methods , Crops, Agricultural/growth & development
8.
Mol Neurobiol ; 61(8): 5958-5973, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38261254

ABSTRACT

As a protein of the orphan nuclear receptor Nr4a family, Nr4a3 has no identified natural ligands. However, its biological activity can be mediated by inducing conformational changes through interactions with specific certain small molecules and receptors. Nr4a3 is activated as an early stress factor under various pathological conditions and plays a regulatory role in various tissues and cells, participating in processes such as cell differentiation, apoptosis, metabolism, and homeostasis. At present, research on the role of Nr4a3 in the pathophysiology of inflammation is considerably limited, especially with respect to its role in the central nervous system (CNS). In this review, we discuss the role of Nr4a3 in multiple sclerosis, Alzheimer's disease, retinopathy, Parkinson's disease, and other CNS diseases. This review shows that Nr4a3 has considerable potential as a therapeutic target in the treatment of CNS diseases. We provide a theoretical basis for the targeted therapy of CNS diseases and neuroinflammation, among other conditions.


Subject(s)
Inflammation , Nervous System Diseases , Humans , Animals , Inflammation/metabolism , Inflammation/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/immunology , Receptors, Thyroid Hormone/metabolism , Immune System Diseases/metabolism , Receptors, Steroid/metabolism , DNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL