Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Fish Shellfish Immunol ; 150: 109623, 2024 Jul.
Article En | MEDLINE | ID: mdl-38750705

The interleukin-12 (IL-12) family is a class of heterodimeric cytokines that play crucial roles in pro-inflammatory and pro-stimulatory responses. Although some IL-12 and IL-23 paralogues have been found in fish, their functional activity in fish remains poorly understood. In this study, Pf_IL-12p35a/b, Pf_IL-23p19 and Pf_IL-12p40a/b/c genes were cloned from yellow catfish (Pelteobagrus fulvidraco), four α-helices were found in Pf_IL-12p35a/b and Pf_IL-23p19. The transcripts of these six genes were relatively high in mucus and immune tissues of healthy individuals, and in gill leukocytes. Following Edwardsiella ictaluri infection, Pf_IL-12p35a/b and Pf_IL-23p19 mRNAs were induced in brain and kidney (or head kidney), Pf_IL-12p40a mRNA was induced in gill, and Pf_IL-12p40b/c mRNAs were induced in brain and liver (or skin). The mRNA expression of these genes in PBLs was induced by phytohaemagglutinin (PHA) and polyinosinic-polycytidylic acid (poly I:C), while lipopolysaccharides (LPS) induced the mRNA expression of Pf_IL-12p35a and Pf_IL-12p40b/c in PBLs. After stimulation with recombinant (r) Pf_IL-12 and rPf_IL-23 subunit proteins, either alone or in combination, mRNA expression patterns of genes related to T helper cell development exhibited distinct differences. The results suggest that Pf_IL-12 and Pf_IL-23 subunits may play important roles in regulating immune responses to pathogens and T helper cell development.


Catfishes , Enterobacteriaceae Infections , Fish Diseases , Fish Proteins , Gene Expression Profiling , Gene Expression Regulation , Immunity, Innate , Interleukin-12 Subunit p40 , Animals , Catfishes/genetics , Catfishes/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Fish Diseases/immunology , Gene Expression Regulation/immunology , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/immunology , Gene Expression Profiling/veterinary , Immunity, Innate/genetics , Edwardsiella ictaluri/physiology , Interleukin-12 Subunit p35/genetics , Interleukin-12 Subunit p35/immunology , Phylogeny , Amino Acid Sequence , Sequence Alignment/veterinary , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/immunology , Poly I-C/pharmacology
2.
Genet Mol Biol ; 46(2): e20220323, 2023.
Article En | MEDLINE | ID: mdl-37335919

Hepatocellular carcinoma (HCC) is the most common type of liver malignancy with high incidence and poor prognosis. Transmembrane protein 147 (TMEM147) has been implicated in the development of colon cancer. However, the role of TMEM147 in HCC remains unclear. In this study, data of 371 HCC tissues, 50 adjacent nontumor tissues, and 110 normal liver tissues were retrieved from the TCGA and GTEx databases. TMEM147 expression was found to be increased in HCC tissues. High expression of TMEM147 was related to poor prognosis, and TMEM147 was confirmed to be an independent prognostic factor for HCC patients. A receiver operating characteristics (ROC) analysis was performed and showed that the diagnostic efficacy of TMEM147 was significantly higher than that of AFP (0.908 versus 0.746, p < 0.001). Furthermore, TMEM147 promoted tumor immune infiltration, and macrophages were the immune cells that predominantly expressed TMEM147 in HCC. Further analysis revealed that TMEM147 mainly impacted the ribosome pathway, and CTCF, MLLT1, TGIF2, ZNF146, and ZNF580 were predicted to be the upstream transcription factors for TMEM147 in HCC. These results suggest that TMEM147 serves as a promising biomarker for diagnosis and prognosis and may potentially become a therapeutic target for HCC.

3.
Int J Mol Sci ; 24(9)2023 May 06.
Article En | MEDLINE | ID: mdl-37176078

The yellow catfish (Pelteobagrus fulvidraco) is an economic fish with a large breeding scale, and diseases have led to huge economic losses. Tumor necrosis factor receptor-associated factors (TRAFs) are a class of intracellular signal transduction proteins that play an important role in innate and adaptive immune responses by mediating NF-κB, JNK and MAPK signaling pathways. However, there are few studies on the TRAF gene family in yellow catfish. In this study, the open reading frame (ORF) sequences of TRAF1, TRAF2a, TRAF2b, TRAF3, TRAF4a, TRAF4b, TRAF5, TRAF6 and TRAF7 genes were cloned and identified in yellow catfish. The ORF sequences of the nine TRAF genes of yellow catfish (Pf_TRAF1-7) were 1413-2025 bp in length and encoded 470-674 amino acids. The predicted protein structures of Pf_TRAFs have typically conserved domains compared to mammals. The phylogenetic relationships showed that TRAF genes are conserved during evolution. Gene structure, motifs and syntenic analyses of TRAF genes showed that the exon-intron structure and conserved motifs of TRAF genes are diverse among seven vertebrate species, and the TRAF gene family is relatively conserved evolutionarily. Among them, TRAF1 is more closely related to TRAF2a and TRAF2b, and they may have evolved from a common ancestor. TRAF7 is quite different and distantly related to other TRAFs. Real-time quantitative PCR (qRT-PCR) results showed that all nine Pf_TRAF genes were constitutively expressed in 12 tissues of healthy yellow catfish, with higher mRNA expression levels in the gonad, spleen, brain and gill. After infection with Edwardsiella ictaluri, the expression levels of nine Pf_TRAF mRNAs were significantly changed in the head kidney, spleen, gill and brain tissues of yellow catfish, of which four genes were down-regulated and one gene was up-regulated in the head kidney; four genes were up-regulated and four genes were down-regulated in the spleen; two genes were down-regulated, one gene was up-regulated, and one gene was up-regulated and then down-regulated in the gill; one gene was up-regulated, one gene was down-regulated, and four genes were down-regulated and then up-regulated in the brain. These results indicate that Pf_TRAF genes might be involved in the immune response against bacterial infection. Subcellular localization results showed that all nine Pf_TRAFs were found localized in the cytoplasm, and Pf_TRAF2a, Pf_TRAF3 and Pf_TRAF4a could also be localized in the nucleus, uncovering that the subcellular localization of TRAF protein may be closely related to its structure and function in cellular mechanism. The results of this study suggest that the Pf_TRAF gene family plays important roles in the immune response against pathogen invasion and will provide basic information to further understand the roles of TRAF gene against bacterial infection in yellow catfish.


Catfishes , Enterobacteriaceae Infections , Fish Diseases , Animals , Edwardsiella ictaluri/metabolism , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/veterinary , Catfishes/genetics , TNF Receptor-Associated Factor 1/genetics , TNF Receptor-Associated Factor 1/metabolism , Phylogeny , TNF Receptor-Associated Factor 3/genetics , Fish Proteins/metabolism , Mammals/metabolism
4.
J Sep Sci ; 46(14): e2300195, 2023 Jul.
Article En | MEDLINE | ID: mdl-37232227

The inhibition of tyrosinase is considered to be a common therapeutic strategy for some hyperpigmentation disorders. Screening of tyrosinase inhibitors is of great significance to the treatment of pigmentation diseases. In this study, tyrosinase was covalently immobilized on magnetic multi-walled carbon nanotubes for the first time, and the immobilized tyrosinase was applied for ligand fishing of tyrosinase inhibitors from complex medicinal plants. The immobilized tyrosinase was characterized by transmission electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and thermo-gravimetric analyzer, which indicated that tyrosinase was immobilized onto magnetic multi-walled carbon nanotubes. The immobilized tyrosinase showed better thermal stability and reusability than the free one. The ligand was fished out from Radix Paeoniae Alba and identified as 1,2,3,4,6-pentagalloylglucose by ultra-performance liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. 1,2,3,4,6-pentagalloylglucose was found to be a tyrosinase inhibitor with similar half maximal inhibitory concentration values of 57.13 ± 0.91 µM compared to kojic acid (41.96 ± 0.78 µM). This work not only established a new method for screening tyrosinase inhibitors but also holds considerable potential for exploring the new medicinal value of medicinal plants.


Monophenol Monooxygenase , Nanotubes, Carbon , Monophenol Monooxygenase/chemistry , Nanotubes, Carbon/chemistry , Ligands , Magnetic Phenomena , Enzymes, Immobilized/chemistry
5.
Anat Rec (Hoboken) ; 306(12): 2920-2926, 2023 12.
Article En | MEDLINE | ID: mdl-37086202

For millennia, traditional Chinese medicine (TCM) has relieved the pain of countless patients with its unique theory and treatment method, which has provoked researchers' interest for exploring the biological and molecular mechanisms. This special issue highlights recent advances of this ancient and mysterious medical system in the basic science research field. The authors in this volume explored the molecular characteristics of TCM syndromes and the disease-resistant mechanisms of acupuncture and Chinese herbs in the diseases effecting the human motor system, digestive system, nervous system, and other organ systems by applying high-throughput omics technologies, molecular biology experiments, animal models and other methods. Alongside enhancing their perception of TCM from these latest findings, readers can also understand how to cross the systematic theory of TCM with modern molecular biology techniques. These studies advance our understanding of the potential mechanisms of TCM in treating human diseases, and also provide inspiration for the development of novel TCM-based therapeutic strategies. We hope these efforts will promote extensive development in TCM research.


Acupuncture Therapy , Medicine, Chinese Traditional , Animals , Humans
6.
Front Mol Biosci ; 10: 1099654, 2023.
Article En | MEDLINE | ID: mdl-36891238

Tuberculosis (TB) is the leading cause of death among infectious diseases, and the ratio of cases in which its pathogen Mycobacterium tuberculosis (Mtb) is drug resistant has been increasing worldwide, whereas latent tuberculosis infection (LTBI) may develop into active TB. Thus it is important to understand the mechanism of drug resistance, find new drugs, and find biomarkers for TB diagnosis. The rapid progress of metabolomics has enabled quantitative metabolite profiling of both the host and the pathogen. In this context, we provide recent progress in the application of metabolomics toward biomarker discovery for tuberculosis. In particular, we first focus on biomarkers based on blood or other body fluids for diagnosing active TB, identifying LTBI and predicting the risk of developing active TB, as well as monitoring the effectiveness of anti-TB drugs. Then we discuss the pathogen-based biomarker research for identifying drug resistant TB. While there have been many reports of potential candidate biomarkers, validations and clinical testing as well as improved bioinformatics analysis are needed to further substantiate and select key biomarkers before they can be made clinically applicable.

7.
Int J Biol Macromol ; 220: 493-509, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-35981681

In mammals, six interleukin-17 (IL-17) genes, as potent pro-inflammatory cytokines, all accelerate the inflammatory responses. In teleosts, seven IL-17 genes have been found in various species, but little is known about the function of teleost-specific IL-17N. In this study, teleost IL-17N and IL-17A/F2 genes all had six conserved cysteine residues forming three intrachain disulfide bridges, the length of three exons of teleost IL-17N gene was similar to that of teleost IL-17A/F2 gene, and the neighbor-joining (NJ) phylogenetic tree showed that teleost IL-17N was clustered with vertebrate IL-17A/F, implying that teleost IL-17N gene may be a paralog of teleost IL-17A/F gene. Pelteobagrus fulvidraco (Pf) IL-17N gene was highly expressed in the blood, brain and kidney of healthy yellow catfish. Pf_IL-17N transcript and protein were notably up-regulated in the spleen, head kidney, gill and kidney detected after Edwardsiella ictaluri infection. Lipopolysaccharides (LPS), polyinosinic-polycytidylic acid (Poly I:C) and peptidoglycan (PGN) also remarkably induced the expression of Pf_IL-17N in the isolated peripheral blood leucocytes (PBLs) of yellow catfish. These results reveal that Pf_IL-17N may play important roles in preventing the invasion of pathogens. Furthermore, the recombinant (r) Pf_IL-17N protein could significantly induce the mRNA expressions of inflammatory cytokines, chemokines and antimicrobial peptide genes in yellow catfish in vivo and in vitro, and it also notably promoted the phagocytosis of myeloid cells in the PBLs and the chemotaxis of the PBLs and gill leucocytes (GLs) in yellow catfish. Besides, though the rPf_IL-17N protein could induce and aggravate inflammation infiltration in the kidney of yellow catfish, it did not effectively and notably increase the survival rate of yellow catfish after E. ictaluri infection. Furthermore, the rPf_IL-17N protein could induce the mRNA expressions of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways related genes, and the inhibitor of NF-κB and MAPK signal pathways could restrain the rPf_IL-17N protein-induced inflammatory response. This study provides crucial evidence that the Pf_IL-17N may mediate inflammatory response to eliminate invasive pathogens.


Catfishes , Enterobacteriaceae Infections , Fish Diseases , Animals , Catfishes/metabolism , Cysteine/genetics , Disulfides , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/prevention & control , Enterobacteriaceae Infections/veterinary , Fish Diseases/genetics , Fish Diseases/prevention & control , Fish Proteins/chemistry , Interleukin-17/genetics , Interleukins/genetics , Lipopolysaccharides/pharmacology , Mammals/genetics , Mitogen-Activated Protein Kinases/genetics , NF-kappa B/genetics , Peptidoglycan/pharmacology , Phylogeny , Poly I-C/pharmacology , RNA, Messenger/metabolism
8.
J Sep Sci ; 45(18): 3635-3645, 2022 Sep.
Article En | MEDLINE | ID: mdl-35852941

In this study, tyrosinase was immobilized on carboxyl functionalized silica-coated magnetic nanoparticles for the first time to be used for fishing of tyrosinase's ligands present in complex plant extract. The immobilized tyrosinase was characterized by transmission electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy, thermo-gravimetric analyzer, and atomic force microscopy. The reusability and thermostability of the immobilized tyrosinase were found significantly superior to its free counterpart. Two tyrosinase's ligands, that is, caffeic acid (1) and rosmarinic acid (2), were fished out from extract of the traditional Chinese medicine Prunellae Spica by the immobilized tyrosinase. Compound 1 was found to be an activator of the enzyme with the half maximal effective concentration value of 0.27 ± 0.06 mM, while compound 2 was an inhibitor with the half maximal inhibitory concentration value of 0.14 ± 0.03 mM. Taking advantage of the convenience of magnetic separation and specific extraction ability of ligand fishing, the proposed method exhibited great potential for screening of bioactive compounds from complex matrices.


Magnetite Nanoparticles , Monophenol Monooxygenase , Enzymes, Immobilized/chemistry , Ligands , Magnetite Nanoparticles/chemistry , Monophenol Monooxygenase/chemistry , Plant Extracts/chemistry , Silicon Dioxide
9.
Int J Biol Macromol ; 185: 176-193, 2021 Aug 31.
Article En | MEDLINE | ID: mdl-34144067

Inflammation is a common manifestation of body immunity and mediates a cascade of cytokines. Tumor necrosis factor-α (TNF-α), as a multi-effect cytokine, plays an important role in the inflammatory response by interacting with its receptor (TNFR). In this study, Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 genes were cloned from yellow catfish (Pelteobagrus fulvidraco), and bioinformatics analyses showed that the three genes were conserved and possessed similar sequence characteristics as those of other vertebrates. The qPCR results showed that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 mRNAs were constitutively expressed in 14 tissues and the lymphocytes of four tissues from healthy adults. The mRNA expression levels of Pf_TNF-α and Pf_TNFR1 genes were significantly up-regulated in the spleen, liver, trunk kidney, head kidney and gill after Edwardsiella ictaluri infection, while the mRNA expression of Pf_TNFR2 was significantly up-regulated in the spleen, and down-regulated in the liver and gill. In the isolated peripheral blood leukocytes (PBLs) of yellow catfish, the expression of Pf_TNF-α mRNA was notably up-regulated and the two Pf_TNFR transcripts were distinctly down-regulated after stimulation with lipopolysaccharides (LPS), peptidoglycan (PGN), polyinosinic-polycytidylic acid (Poly I:C) and phytohaemagglutinin (PHA). After stimulated by recombinant (r) Pf_sTNF protein, the mRNA expressions of various inflammatory factors genes were up-regulated in the PBLs. Meanwhile, rPf_sTNF promoted the phagocytic activity of leukocytes, whereas the activity mediated by rPf_sTNF could be inhibited by rPf_TNFR1CRD2/3 and rPf_TNFR2CRD2/3. The up-regulation of TNF-α and IL-1ß mRNAs expression triggered by rPf_sTNF could be inhibited by MAPK inhibitor (VX-702) and NF-κB inhibitor (PDTC). rPf_sTNF induced the expression of FADD mRNA in PBLs and increased the apoptotic rate of PBLs, and inhibiting the NF-κB and MAPK signal pathways could enhance the apoptosis of PBLs. The results indicate that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 play important roles in the immune response of yellow catfish to bacterial invasion.


Catfishes/genetics , Cloning, Molecular/drug effects , Receptors, Tumor Necrosis Factor/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Computational Biology , Female , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Male , Organ Specificity , Peptidoglycan/pharmacology , Phylogeny , Phytohemagglutinins/pharmacology , Poly I-C/pharmacology
10.
Front Chem ; 8: 581198, 2020.
Article En | MEDLINE | ID: mdl-33102448

In this study, we compared the decontamination kinetics of various target compounds and the oxidation by-products (bromate and chlorate) of PMS, PDS, and H2O2 under UV irradiation (UV/PMS, UV/PDS, UV/H2O2). Probes of different reactivity with hydroxyl and sulfate radicals, such as benzoic acid (BA), nitrobenzene (NB), and trichloromethane (TCM), were selected to compare the decontamination efficiency of the three oxidation systems. Experiments were performed under acidic, neutral, and alkaline pH conditions to obtain a full-scale comparison of UV/peroxides. Furthermore, the decontamination efficiency was also compared in the presence of common radical scavengers in water bodies [bicarbonate, carbonate, and natural organic matter (NOM)]. Finally, the formation of oxidation by-products, bromate, and chlorate, was also monitored in comparison in pure water and tap water. Results showed that UV/H2O2 showed higher decontamination efficiency than UV/PDS and UV/PMS for BA degradation while UV/H2O2 and UV/PMS showed better decontamination performance than UV/PDS for NB degradation under acidic and neutral conditions. UV/PMS was the most efficient among the three processes for BA and NB degradation under alkaline conditions, while UV/PDS was the most efficient for TCM degradation under all pH conditions. In pure water, both bromate and chlorate were formed in UV/PDS, small amounts of bromate and rare chlorate were observed in UV/PMS, and no detectable bromate and chlorate were formed in UV/H2O2. In tap water, no bromate and chlorate were detectable for all three systems.

11.
Zhongguo Zhong Yao Za Zhi ; 43(23): 4575-4581, 2018 Dec.
Article Zh | MEDLINE | ID: mdl-30717544

The specific PCR primer was designed base on ITS2 sequence in GenBank, and we developed a SYBRGreen real-time fluorescence quantitative PCR system for identification of Crocus sativus and Carthamus tinctorius source. Compared with Chinese herbal medicine DNA barcode technique, this method showed characteristics of shorter time, higher specificity and sensitivity. Using this method to detect 15 samples, 4 were C. sativus, 8 were C. tinctorius, and the other 3 samples were none of them. The result was in accordance with Chinese herbal medicine DNA barcode. This study lays the foundation for identification of related Chinese medical materials.


Carthamus tinctorius , Crocus , Real-Time Polymerase Chain Reaction
12.
Article En | MEDLINE | ID: mdl-27525025

Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD.

13.
Huan Jing Ke Xue ; 32(9): 2710-5, 2011 Sep.
Article Zh | MEDLINE | ID: mdl-22165243

A denitrifying phosphate-accumulating organisms (DNPAOs), which was called Q-hrb05, was isolated in the special medium from the anaerobic/aerobic/anoxic SBR reactor. Strain Q-hrb05 was identified by 16SrDNA gene analysis, and the accession number of 16SrDNA gene sequence of strain Q-hrb05 in GenBank was GU214826. Effects of the different pH values, temperature, carbon source of medium on nitrogen and phosphorus removal of strain Q-hrb05 were investigated. The result showed that strain Q-hrb05 belonged to Bacillus sp.. Meanwhile, extracellular exopolymers of strain Q-hrb05 was based on protein, about 120.6 mg x mL(-1), and it had 23.05 microg x mL(-1) nucleic acid, but little polysaccharide. There was no significant adsorption of phosphate. So phosphorus removal was mainly due to intracellular uptake. And when pH value was kept as 7, temperature was kept as 30 degrees C, and carbon source was kept sodium acetate, the highest nitrogen and phosphorus removal efficiency was achieved. Phosphorus uptake rate was averaged at 88%, and the denitrification rate reached 81%.


Bacillus/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Polyphosphates/metabolism , Water Pollutants, Chemical/metabolism , Bacillus/isolation & purification , Biodegradation, Environmental , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Polyphosphates/isolation & purification , Water Pollutants, Chemical/isolation & purification
...