Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Curr Neuropharmacol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808717

ABSTRACT

Chronic pain represents a prevalent and costly medical challenge globally. Nicotinic acetylcholine receptors (nAChRs), one type of ligand-gated ion channels found extensively in both the central and peripheral nervous systems, have emerged as promising therapeutic targets for chronic pain. Although there are currently no FDA-approved analgesics specifically targeting nAChRs, accumulating preclinical and clinical evidence suggest that selective ligands for alpha 7 (α7) nAChRs show potential for treating chronic pain, boasting a reduced incidence of side effects compared with other nicotinic receptor types. The recent structural resolution of human α7 nAChRs has confirmed their negative association with heightened pain, providing a valuable foundation for the development of targeted medications. This review presents a comprehensive overview, encompassing insights into the roles of α7 nAChRs derived from structural and functional studies, recent advancements in pharmacology, and investigations into their involvement in the pathophysiology of chronic pain. Moreover, the review addresses the variability in analgesic effects based on the type of receptor agonist and highlights the current research limitations. As such, this review offers potential therapeutic approaches for the development of innovative strategies for chronic pain management.

2.
Proc Natl Acad Sci U S A ; 121(6): e2312861121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38285939

ABSTRACT

The N6-methyladenosine (m6A) modification of RNA is an emerging epigenetic regulatory mechanism that has been shown to participate in various pathophysiological processes. However, its involvement in modulating neuropathic pain is still poorly understood. In this study, we elucidate a functional role of the m6A demethylase alkylation repair homolog 5 (ALKBH5) in modulating trigeminal-mediated neuropathic pain. Peripheral nerve injury selectively upregulated the expression level of ALKBH5 in the injured trigeminal ganglion (TG) of rats. Blocking this upregulation in injured TGs alleviated trigeminal neuropathic pain, while mimicking the upregulation of ALKBH5 in intact TG neurons sufficiently induced pain-related behaviors. Mechanistically, histone deacetylase 11 downregulation induced by nerve injury increases histone H3 lysine 27 acetylation (H3K27ac), facilitating the binding of the transcription factor forkhead box protein D3 (FOXD3) to the Alkbh5 promoter and promoting Alkbh5 transcription. The increased ALKBH5 erases m6A sites in Htr3a messenger RNA (mRNA), resulting in an inability of YT521-B homology domain 2 (YTHDF2) to bind to Htr3a mRNA, thus causing an increase in 5-HT3A protein expression and 5-HT3 channel currents. Conversely, blocking the increased expression of ALKBH5 in the injured TG destabilizes nerve injury-induced 5-HT3A upregulation and reverses mechanical allodynia, and the effect can be blocked by 5-HT3A knockdown. Together, FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain through m6A-dependent stabilization of Htr3a mRNA in TG neurons. This mechanistic understanding may advance the discovery of new therapeutic targets for neuropathic pain management.


Subject(s)
Neuralgia , Trigeminal Neuralgia , Animals , Rats , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Neuralgia/genetics , Neuralgia/metabolism , RNA, Messenger/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/metabolism , Transcriptional Activation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Receptors, Serotonin, 5-HT3/genetics
3.
Nat Commun ; 14(1): 7234, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945654

ABSTRACT

Although beta-endorphinergic neurons in the hypothalamic arcuate nucleus (ARC) synthesize beta-endorphin (ß-EP) to alleviate nociceptive behaviors, the underlying regulatory mechanisms remain unknown. Here, we elucidated an epigenetic pathway driven by microRNA regulation of ß-EP synthesis in ARC neurons to control neuropathic pain. In pain-injured rats miR-203a-3p was the most highly upregulated miRNA in the ARC. A similar increase was identified in the cerebrospinal fluid of trigeminal neuralgia patients. Mechanistically, we found histone deacetylase 9 was downregulated following nerve injury, which decreased deacetylation of histone H3 lysine-18, facilitating the binding of NR4A2 transcription factor to the miR-203a-3p gene promoter, thereby upregulating miR-203a-3p expression. Further, increased miR-203a-3p was found to maintain neuropathic pain by targeting proprotein convertase 1, an endopeptidase necessary for the cleavage of proopiomelanocortin, the precursor of ß-EP. The identified mechanism may provide an avenue for the development of new therapeutic targets for neuropathic pain treatment.


Subject(s)
MicroRNAs , Neuralgia , Animals , Humans , Rats , Arcuate Nucleus of Hypothalamus/metabolism , beta-Endorphin/genetics , beta-Endorphin/metabolism , Epigenesis, Genetic , MicroRNAs/genetics , MicroRNAs/metabolism , Neuralgia/genetics , Neuralgia/metabolism , Neurons/metabolism , Rodentia/genetics
4.
J Headache Pain ; 24(1): 49, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158881

ABSTRACT

BACKGROUND: Trace amines, such as tyramine, are endogenous amino acid metabolites that have been hypothesized to promote headache. However, the underlying cellular and molecular mechanisms remain unknown. METHODS: Using patch-clamp recording, immunostaining, molecular biological approaches and behaviour tests, we elucidated a critically functional role of tyramine in regulating membrane excitability and pain sensitivity by manipulating Kv1.4 channels in trigeminal ganglion (TG) neurons. RESULTS: Application of tyramine to TG neurons decreased the A-type K+ current (IA) in a manner dependent on trace amine-associated receptor 1 (TAAR1). Either siRNA knockdown of Gαo or chemical inhibition of ßγ subunit (Gßγ) signaling abrogated the response to tyramine. Antagonism of protein kinase C (PKC) prevented the tyramine-induced IA response, while inhibition of conventional PKC isoforms or protein kinase A elicited no such effect. Tyramine increased the membrane abundance of PKCθ in TG neurons, and either pharmacological or genetic inhibition of PKCθ blocked the TAAR1-mediated IA decrease. Furthermore, PKCθ-dependent IA suppression was mediated by Kv1.4 channels. Knockdown of Kv1.4 abrogated the TAAR1-induced IA decrease, neuronal hyperexcitability, and pain hypersensitivity. In a mouse model of migraine induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus, blockade of TAAR1 signaling attenuated mechanical allodynia; this effect was occluded by lentiviral overexpression of Kv1.4 in TG neurons. CONCLUSION: These results suggest that tyramine induces Kv1.4-mediated IA suppression through stimulation of TAAR1 coupled to the Gßγ-dependent PKCθ signaling cascade, thereby enhancing TG neuronal excitability and mechanical pain sensitivity. Insight into TAAR1 signaling in sensory neurons provides attractive targets for the treatment of headache disorders such as migraine.


Subject(s)
Nociception , Trigeminal Ganglion , Animals , Mice , Neurons , Pain
5.
ACS Omega ; 7(42): 37683-37693, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312402

ABSTRACT

Mine water disasters are one of the main disasters threatening safe mine operations. If a fault becomes a water guide channel, it often causes serious water inrush accidents in mining. Therefore, accurate evaluation of fault hydraulic conductivity is very important for the prediction and prevention of mine water disasters. To prevent and control mine water disasters and ensure safe mining of coal seams in the presence of faults, this paper takes the F22 fault in the Jinqiao Coal Mine as an example; proposes three highly applicable fault water conductivity evaluation methods based on analysis of water-rock stress, difference analysis of hydrochemical characteristics, and difference analysis of water pressures for the same aquifer on both sides of the fault; and comprehensively analyzes and evaluates the water conductivity of the F22 fault. The results are as follows: the cross-sectional pressure of the fault is greater than the aquifer water pressure and the plastic deformation strength of mudstone combined. The hydrochemical characteristics of the three-ash aquifers on both sides of the fault are obviously different. The water in the three-ash aquifer on one side of the fault has been drained for a long time, while the water pressure on the other side of the fault has not changed significantly. Based on a comprehensive analysis, it is judged that the F22 fault is not water-conducting. The evaluation results are consistent with geophysical explorations and the actual mine roadway exposure, which verifies the feasibility and rationality of the fault water conductivity evaluation method described above.

6.
Sensors (Basel) ; 22(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015945

ABSTRACT

Structural health monitoring (SHM) is gradually replacing traditional manual detection and is becoming a focus of the research devoted to the operation and maintenance of tunnel structures. However, in the face of massive SHM data, the autonomous early warning method is still required to further reduce the burden of manual analysis. Thus, this study proposed a dynamic warning method for SHM data based on ARIMA and applied it to the concrete strain data of the Hong Kong-Zhuhai-Macao Bridge (HZMB) immersed tunnel. First, wavelet threshold denoising was applied to filter noise from the SHM data. Then, the feasibility and accuracy of establishing an ARIMA model were verified, and it was adopted to predict future time series of SHM data. After that, an anomaly detection scheme was proposed based on the dynamic model and dynamic threshold value, which set the confidence interval of detected anomalies based on the statistical characteristics of the historical series. Finally, a hierarchical warning system was defined to classify anomalies according to their detection threshold and enable hierarchical treatments. The illustrative example of the HZMB immersed tunnel verified that a three-level (5.5 σ, 6.5 σ, and 7.5 σ) dynamic warning schematic can give good results of anomalies detection and greatly improves the efficiency of SHM data management of the tunnel.


Subject(s)
Research Design , Forecasting , Hong Kong , Macau
7.
Proc Natl Acad Sci U S A ; 119(14): e2117209119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35353623

ABSTRACT

microRNA (miRNA)­mediated gene regulation has been studied as a therapeutic approach, but its functional regulatory mechanism in neuropathic pain is not well understood. Here, we identify that miRNA-32-5p (miR-32-5p) is a functional RNA in regulating trigeminal-mediated neuropathic pain. High-throughput sequencing and qPCR analysis showed that miR-32-5p was the most down-regulated miRNA in the injured trigeminal ganglion (TG) of rats. Intra-TG injection of miR-32-5p agomir or overexpression of miR-32-5p by lentiviral delivery in neurons of the injured TG attenuated established trigeminal neuropathic pain. miR-32-5p overexpression did not affect acute physiological pain, while miR-32-5p down-regulation in intact rats was sufficient to cause pain-related behaviors. Nerve injury increased the methylated histone occupancy of binding sites for the transcription factor glucocorticoid receptor in the miR-32-5p promoter region. Inhibition of the enzymes that catalyze H3K9me2 and H3K27me3 restored the expression of miR-32-5p and markedly attenuated pain behaviors. Further, miR-32-5p­targeted Cav3.2 T-type Ca2+ channels and decreased miR-32-5p associated with neuropathic pain caused an increase in Cav3.2 protein expression and T-type channel currents. Conversely, miR-32-5p overexpression in injured TG suppressed the increased expression of Cav3.2 and reversed mechanical allodynia. Together, we conclude that histone methylation-mediated miR-32-5p down-regulation in TG neurons regulates trigeminal neuropathic pain by targeting Cav3.2 channels.


Subject(s)
MicroRNAs , Neuralgia , Animals , Down-Regulation , Ganglia, Spinal/metabolism , Histones/genetics , Histones/metabolism , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , Neuralgia/metabolism , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/metabolism
8.
Theranostics ; 12(5): 2232-2247, 2022.
Article in English | MEDLINE | ID: mdl-35265208

ABSTRACT

Background: Interleukin-33 (IL-33) has been implicated in nociceptive pain behaviors. However, the underlying molecular and cellular mechanisms remain unclear. Methods: Using electrophysiological recording, immunoblot analysis, immunofluorescence labeling, reverse transcription-PCR, siRNA-mediated knockdown approach and behavior tests, we determined the role of IL-33 in regulating sensory neuronal excitability and pain sensitivity mediated by A-type K+ channels. Results: IL-33 decreased A-type transient outward K+ currents (IA) in small-sized DRG neurons in a concentration-dependent manner, whereas the delayed rectifier currents (IDR) remained unaffected. This IL-33-induced IA decrease was dependent on suppression of the tumorigenicity 2 (ST2) receptor and was associated with a hyperpolarizing shift in the steady-state inactivation. Antagonism of Syk abrogated the IL-33-induced IA response, while inhibition of JAK2 and PKA elicited no such effect. Exposure of DRG cells to IL-33 increased the activity of Akt, but surprisingly, neither Akt nor PI3K influenced the IL-33-induced IA response. IL-33 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK). Chemical inhibition of p38 and genetic siRNA knockdown of p38 beta (p38ß), but not p38α, abrogated the IA response induced by IL-33. Moreover, IL-33 increased neuronal excitability of DRG neurons and facilitated peripheral pain sensitivity in mice; both of these effects were occluded by IA blockade. Conclusions: Our present study reveals a novel mechanism by which IL-33/ST2 suppresses IA via a Syk-dependent p38ß signaling pathway. This mechanism thereby increases DRG neuronal excitability and pain sensitivity in mice. Targeting IL-33/ST2-mediated p38ß signaling may represent a therapeutic approach to ameliorate pain behaviors.


Subject(s)
Interleukin-33 , Proto-Oncogene Proteins c-akt , Animals , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Mice , Nociception , Pain/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism , Sensory Receptor Cells/metabolism
9.
Theranostics ; 11(19): 9342-9357, 2021.
Article in English | MEDLINE | ID: mdl-34646374

ABSTRACT

Background: Neuromedin B (Nmb) is implicated in the regulation of nociception of sensory neurons. However, the underlying cellular and molecular mechanisms remain unknown. Methods: Using patch clamp recording, western blot analysis, immunofluorescent labelling, enzyme-linked immunosorbent assays, adenovirus-mediated shRNA knockdown and animal behaviour tests, we studied the effects of Nmb on the sensory neuronal excitability and peripheral pain sensitivity mediated by Cav3.2 T-type channels. Results: Nmb reversibly and concentration-dependently increased T-type channel currents (IT) in small-sized trigeminal ganglion (TG) neurons through the activation of neuromedin B receptor (NmbR). This NmbR-mediated IT response was Gq protein-coupled, but independent of protein kinase C activity. Either intracellular application of the QEHA peptide or shRNA-mediated knockdown of Gß abolished the NmbR-induced IT response. Inhibition of protein kinase A (PKA) or AMP-activated protein kinase (AMPK) completely abolished the Nmb-induced IT response. Analysis of phospho-AMPK (p-AMPK) revealed that Nmb significantly activated AMPK, while AMPK inhibition prevented the Nmb-induced increase in PKA activity. In a heterologous expression system, activation of NmbR significantly enhanced the Cav3.2 channel currents, while the Cav3.1 and Cav3.3 channel currents remained unaffected. Nmb induced TG neuronal hyperexcitability and concomitantly induced mechanical and thermal hypersensitivity, both of which were attenuated by T-type channel blockade. Moreover, blockade of NmbR signalling prevented mechanical hypersensitivity in a mouse model of complete Freund's adjuvant-induced inflammatory pain, and this effect was attenuated by siRNA knockdown of Cav3.2. Conclusions: Our study reveals a novel mechanism by which NmbR stimulates Cav3.2 channels through a Gßγ-dependent AMPK/PKA pathway. In mouse models, this mechanism appears to drive the hyperexcitability of TG neurons and induce pain hypersensitivity.


Subject(s)
Calcium Channels, T-Type/metabolism , Pain/metabolism , Receptors, Bombesin/metabolism , Action Potentials , Animals , Calcium Channels, T-Type/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Freund's Adjuvant/pharmacology , Ganglia, Spinal/metabolism , Male , Mice , Mice, Inbred ICR , Neurokinin B/analogs & derivatives , Neurokinin B/metabolism , Pain/physiopathology , Receptors, Bombesin/physiology , Receptors, G-Protein-Coupled/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Signal Transduction/drug effects , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism
10.
Front Neurorobot ; 15: 700483, 2021.
Article in English | MEDLINE | ID: mdl-34326724

ABSTRACT

Bad weather conditions (such as fog, haze) seriously affect the visual quality of images. According to the scene depth information, physical model-based methods are used to improve image visibility for further image restoration. However, the unstable acquisition of the scene depth information seriously affects the defogging performance of physical model-based methods. Additionally, most of image enhancement-based methods focus on the global adjustment of image contrast and saturation, and lack the local details for image restoration. So, this paper proposes a single image defogging method based on image patch decomposition and multi-exposure fusion. First, a single foggy image is processed by gamma correction to obtain a set of underexposed images. Then the saturation of the obtained underexposed and original images is enhanced. Next, each image in the multi-exposure image set (including the set of underexposed images and the original image) is decomposed into the base and detail layers by a guided filter. The base layers are first decomposed into image patches, and then the fusion weight maps of the image patches are constructed. For detail layers, the exposure features are first extracted from the luminance components of images, and then the extracted exposure features are evaluated by constructing gaussian functions. Finally, both base and detail layers are combined to obtain the defogged image. The proposed method is compared with the state-of-the-art methods. The comparative experimental results confirm the effectiveness of the proposed method and its superiority over the state-of-the-art methods.

11.
Biomed Pharmacother ; 135: 111185, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33422932

ABSTRACT

Aminoglycoside antibiotics, such as gentamicin, are known to have vestibulotoxic effects, including ataxia and disequilibrium. To date, however, the underlying cellular and molecular mechanisms are still unclear. In this study, we determined the role of gentamicin in regulating the sustained delayed rectifier K+ current (IDR) and membrane excitability in vestibular ganglion (VG) neurons in mice. Our results showed that the application of gentamicin to VG neurons decreased the IDR in a concentration-dependent manner, while the transient outward A-type K+ current (IA) remained unaffected. The decrease in IDR induced by gentamicin was independent of G-protein activity and led to a hyperpolarizing shift of the inactivation Vhalf. The analysis of phospho-c-Jun N-terminal kinase (p-JNK) revealed that gentamicin significantly stimulated JNK, while p-ERK and p-p38 remained unaffected. Blocking Kv1 channels with α-dendrotoxin or pretreating VG neurons with the JNK inhibitor II abrogated the gentamicin-induced decrease in IDR. Antagonism of JNK signaling attenuated the gentamicin-induced stimulation of PKA activity, whereas PKA inhibition prevented the IDR response induced by gentamicin. Moreover, gentamicin significantly increased the number of action potentials fired in both phasic and tonic firing type neurons; pretreating VG neurons with the JNK inhibitor II and the blockade of the IDR abolished this effect. Taken together, our results demonstrate that gentamicin decreases the IDR through a G-protein-independent but JNK and PKA-mediated signaling pathways. This gentamicin-induced IDR response mediates VG neuronal hyperexcitability and might contribute to its pharmacological vestibular effects.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Ganglia, Sensory/drug effects , Gentamicins/toxicity , JNK Mitogen-Activated Protein Kinases/metabolism , Neurons/drug effects , Potassium Channel Blockers/toxicity , Vestibular Nerve/drug effects , Action Potentials , Animals , Cells, Cultured , Delayed Rectifier Potassium Channels/metabolism , Female , Ganglia, Sensory/enzymology , Male , Mice, Inbred ICR , Neurons/enzymology , Phosphorylation , Signal Transduction , Vestibular Nerve/enzymology
12.
Mol Pain ; 16: 1744806920930858, 2020.
Article in English | MEDLINE | ID: mdl-32484026

ABSTRACT

AIMS: The arcuate nucleus is a vital brain region for coursing of pain command. G protein-coupled kinase 6 (GRK6) accommodates signaling through G protein-coupled receptors. Studies have demonstrated that GRK6 is involved in inflammatory pain and neuropathic pain. The present study was designed to explore the role and the underlying mechanism of GRK6 in arcuate nucleus of chronic visceral pain. METHODS: Chronic visceral pain of rats was induced by neonatal maternal deprivation and evaluated by monitoring the threshold of colorectal distension. Western blotting, immunofluorescence, real-time quantitative polymerase chain reaction techniques, and Nissl staining were employed to determine the expression and mutual effect of GRK6 with nuclear factor κB (NF-κB). RESULTS: Expression of GRK6 in arcuate nucleus was significantly reduced in neonatal maternal deprivation rats when compared with control rats. GRK6 was mainly expressed in arcuate nucleus neurons, but not in astrocytes, and a little in microglial cells. Neonatal maternal deprivation reduced the percentage of GRK6-positive neurons of arcuate nucleus. Overexpression of GRK6 by Lentiviral injection into arcuate nucleus reversed chronic visceral pain in neonatal maternal deprivation rats. Furthermore, the expression of NF-κB in arcuate nucleus was markedly upregulated in neonatal maternal deprivation rats. NF-κB selective inhibitor pyrrolidine dithiocarbamate suppressed chronic visceral pain in neonatal maternal deprivation rats. GRK6 and NF-κB were expressed in the arcuate nucleus neurons. Importantly, overexpression of GRK6 reversed NF-κB expression at the protein level. In contrast, injection of pyrrolidine dithiocarbamate once daily for seven consecutive days did not alter GRK6 expression in arcuate nucleus of neonatal maternal deprivation rats. CONCLUSIONS: Present data suggest that GRK6 might be a pivotal molecule participated in the central mechanisms of chronic visceral pain, which might be mediated by inhibiting NF-κB signal pathway. Overexpression of GRK6 possibly represents a potential strategy for therapy of chronic visceral pain.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Chronic Pain/metabolism , Down-Regulation , G-Protein-Coupled Receptor Kinases/genetics , Maternal Deprivation , NF-kappa B/metabolism , Up-Regulation/genetics , Visceral Pain/metabolism , Animals , Animals, Newborn , Chronic Pain/complications , Down-Regulation/drug effects , G-Protein-Coupled Receptor Kinases/metabolism , Male , NF-kappa B/antagonists & inhibitors , Neurons/drug effects , Neurons/metabolism , Pyrrolidines/pharmacology , Rats, Sprague-Dawley , Thiocarbamates/pharmacology , Up-Regulation/drug effects , Visceral Pain/complications
13.
Mol Pain ; 16: 1744806920931737, 2020.
Article in English | MEDLINE | ID: mdl-32513089

ABSTRACT

Interleukin-33 (IL-33)/suppressor of tumorigenicity 2 (ST2) signaling is known to promote inflammation and the genesis and maintenance of neuropathic pain. However, it remained mostly unknown how IL-33/ST2 signaling can be enhanced by neuropathic stimulations. Here, we report that the chronic constriction nerve injury (CCI)-induced increases in the expression of IL-33 and ST2 and a decrease in microRNA (miRNA)-547-5p not only in the dorsal root ganglia (DRG) but also in spinal dorsal horn (SDH) ipsilateral to the CCI. We found that increasing endogenous miRNA-547-5p by the intrathecal (i.t.) infusion of agomir-miR-547-5p did not produce any effect in naive rats but blocked the CCI-induced increases in the IL-33 and ST2, and pain sensitivity. The reducing endogenous miRNA-547-5p by the i.t. delivering antagomir-miR-547-5p into naive rats caused significant changes in IL-33 and ST2 expressions in both the DRG and SDH, and pain sensitivity, which were similar to those induced by the CCI. Since increasing IL-33 by the i.t. infusion of recombinant IL-33 produced no change in the expression of miR-547-5p, and the CCI still reduced miR-547-5p expression in rats with the IL-33 knockdown, we conclude that the reduction of miR-547-5p can be an upstream event leading to the enhancement of IL-33/ST2 signaling induced by the CCI. The intravenous application of bone marrow stromal cells (BMSCs) reduced the depression of miR-547-5p in both the DRG and SDH, and pain hypersensitivity produced by the CCI or antagomir-miR547-5p application. However, the BMSC effect was significantly occluded by the pretreatment with miR-547-5p agomir or the IL-33 knockdown, demonstrating a novel mechanism underlying the BMSC therapy.


Subject(s)
Interleukin-33/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Neuralgia/genetics , Neuralgia/therapy , Receptors, Interleukin-1/metabolism , Signal Transduction , 3' Untranslated Regions/genetics , Animals , Antagomirs/metabolism , Base Sequence , Constriction, Pathologic , Ganglia, Spinal/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Interleukin-33/genetics , Male , MicroRNAs/genetics , Neuralgia/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, Interleukin-1/genetics , Spinal Cord Dorsal Horn/metabolism , Up-Regulation/genetics
14.
Pain ; 161(5): 989-1004, 2020 05.
Article in English | MEDLINE | ID: mdl-31895269

ABSTRACT

Functional dyspepsia is a common functional gastrointestinal disorder. Gastric hypersensitivity (GHS) is a hallmark of this disorder, but the cellular mechanisms remain largely unknown. Stressors during gestational period could have effects on the offspring's tissue structure and function, which may predispose to gastrointestinal diseases. The aim of this study was to test whether prenatal maternal stress (PMS) induces GHS and to investigate role of acid-sensing ion channel (ASIC)/nuclear factor-κB (NF-κB) signaling by examining Asic1 methylation status in adult offspring rats. Gastric hypersensitivity in response to gastric distension was examined by electromyography recordings. Changes in neuronal excitability were determined by whole-cell patch-clamp recording techniques. Demethylation of CpG islands of Asic1 was determined by methylation-specific PCR and bisulfite sequencing assay. Prenatal maternal stress produced GHS in adult offspring rats. Treatment with amiloride, an inhibitor of ASICs, significantly attenuated GHS and reversed hyperexcitability of gastric-specific dorsal root ganglion (DRG) neurons labeled by the dye DiI. Expression of ASIC1 and NF-κBp65 was markedly enhanced in T7 to T10 DRGs. Furthermore, PMS led to a significant demethylation of CpG islands in the Asic1 promoter. A chromatin immunoprecipitation assay showed that PMS also enhanced the ability of NF-κBp65 to bind the promoter of Asic1 gene. Blockade of NF-κB using lentiviral-p65shRNA reversed upregulation of ASIC1 expression, GHS, and the hyperexcitability of DRG neurons. These data suggest that upregulation of ASIC1 expression is attributed to Asic1 promoter DNA demethylation and NF-κB activation, and that the enhanced interaction of the Asic1 and NF-κBp65 contributes to GHS induced by PMS.


Subject(s)
Epigenesis, Genetic , Stomach , Stress, Physiological , Acid Sensing Ion Channels/genetics , Animals , Female , Ganglia, Spinal , Patch-Clamp Techniques , Pregnancy , Rats , Up-Regulation
15.
J Neurosci Res ; 98(2): 384-403, 2020 02.
Article in English | MEDLINE | ID: mdl-31407399

ABSTRACT

The cAMP-dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up-regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application-induced up-regulation of AP firing activity could be blocked by pre-application of the SFK inhibitor PP2. SFK activation also up-regulated the AP firing activity and this effect could be prevented by pre-application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/ßII at T638/641, but also in SFKs at Y416. The forskolin or PMA application-induced increase in the phosphorylation of PKAs or PKCs was not affected by pre-treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCßII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up-regulate the AP firing activity in hypothalamic ARC neurons.


Subject(s)
Action Potentials/physiology , Arcuate Nucleus of Hypothalamus/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons/metabolism , Protein Kinase C/metabolism , src-Family Kinases/metabolism , Action Potentials/drug effects , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Cells, Cultured , Colforsin/pharmacology , Female , Male , Neurons/drug effects , Oligopeptides/pharmacology , Patch-Clamp Techniques , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Vasodilator Agents/pharmacology
16.
Sci Signal ; 12(600)2019 09 24.
Article in English | MEDLINE | ID: mdl-31551295

ABSTRACT

Although brain-derived neurotrophic factor (BDNF) is implicated in the nociceptive signaling of peripheral sensory neurons, the underlying mechanisms remain largely unknown. Here, we elucidated the effects of BDNF on the neuronal excitability of trigeminal ganglion (TG) neurons and the pain sensitivity of rats mediated by T-type Ca2+ channels. BDNF reversibly and dose-dependently enhanced T-type channel currents through the activation of tropomyosin receptor kinase B (TrkB). Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its downstream target, the kinase AKT, abolished the BDNF-induced T-type channel response. BDNF application activated p38 mitogen-activated protein kinase (MAPK), and this effect was prevented by inhibition of PI3K but not of protein kinase A (PKA). Antagonism of either PI3K or p38 MAPK prevented the BDNF-induced stimulation of PKA activity, whereas PKA inhibition blocked the BDNF-mediated increase in T-type currents. BDNF increased the rate of action potential firing in TG neurons and enhanced the pain sensitivity of rats to mechanical stimuli. Moreover, inhibition of TrkB signaling abolished the increased mechanical sensitivity in a rat model of chronic inflammatory pain, and this effect was attenuated by either T-type channel blockade or knockdown of the channel Cav3.2. Together, our findings indicate that BDNF enhances T-type currents through the stimulation of TrkB coupled to PI3K-p38-PKA signaling, thereby inducing neuronal hyperexcitability of TG neurons and pain hypersensitivity in rats.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Calcium Channels, T-Type/drug effects , Pain/physiopathology , Sensory Receptor Cells/drug effects , Action Potentials/drug effects , Animals , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Male , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Signal Transduction/drug effects , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
17.
J Headache Pain ; 20(1): 87, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375062

ABSTRACT

BACKGROUND: Migraine is a debilitating neurological disorder involving abnormal trigeminovascular activation and sensitization. However, the underlying cellular and molecular mechanisms remain unclear. METHODS: A rat model of conscious migraine was established through the electrical stimulation (ES) of the dural mater surrounding the superior sagittal sinus. Using patch clamp recording, immunofluorescent labelling, enzyme-linked immunosorbent assays and western blot analysis, we studied the effects of ES on sensory neuronal excitability and elucidated the underlying mechanisms mediated by voltage-gated ion channels. RESULTS: The calcitonin gene-related peptide (CGRP) level in the jugular vein blood and the number of CGRP-positive neurons in the trigeminal ganglia (TGs) were significantly increased in rats with ES-induced migraine. The application of ES increased actional potential firing in both small-sized IB4-negative (IB4-) and IB4+ TG neurons. No significant changes in voltage-gated Na+ currents were observed in the ES-treated groups. ES robustly suppressed the transient outward K+ current (IA) in both types of TG neurons, while the delayed rectifier K+ current remained unchanged. Immunoblot analysis revealed that the protein expression of Kv4.3 was significantly decreased in the ES-treated groups, while Kv1.4 remained unaffected. Interestingly, ES increased the P/Q-type and T-type Ca2+ currents in small-sized IB4- TG neurons, while there were no significant changes in the IB4+ subpopulation of neurons. CONCLUSION: These results suggest that ES decreases the IA in small-sized TG neurons and increases P/Q- and T-type Ca2+ currents in the IB4- subpopulation of TG neurons, which might contribute to neuronal hyperexcitability in a rat model of ES-induced migraine.


Subject(s)
Electric Stimulation/methods , Superior Sagittal Sinus/metabolism , Trigeminal Ganglion/metabolism , Action Potentials , Animals , Calcitonin Gene-Related Peptide/metabolism , Male , Neurons, Afferent/physiology , Rats , Rats, Sprague-Dawley , Superior Sagittal Sinus/cytology , Trigeminal Ganglion/cytology
18.
Cell Commun Signal ; 17(1): 68, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31215470

ABSTRACT

BACKGROUND: Cholecystokinin (CCK) is implicated in the regulation of nociceptive sensitivity of primary afferent neurons. Nevertheless, the underlying cellular and molecular mechanisms remain unknown. METHODS: Using patch clamp recording, western blot analysis, immunofluorescent labelling, enzyme-linked immunosorbent assays, adenovirus-mediated shRNA knockdown and animal behaviour tests, we studied the effects of CCK-8 on the sensory neuronal excitability and peripheral pain sensitivity mediated by A-type K+ channels. RESULTS: CCK-8 reversibly and concentration-dependently decreased A-type K+ channel (IA) in small-sized dorsal root ganglion (DRG) neurons through the activation of CCK type B receptor (CCK-BR), while the sustained delayed rectifier K+ current was unaffected. The intracellular subunit of CCK-BR coimmunoprecipitated with Gαo. Blocking G-protein signaling with pertussis toxin or by the intracellular application of anti-Gß antibody reversed the inhibitory effects of CCK-8. Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its common downstream target Akts abolished the CCK-BR-mediated IA response. CCK-8 application significantly activated JNK mitogen-activated protein kinase. Antagonism of either JNK or c-Src prevented the CCK-BR-mediated IA decrease, whereas c-Src inhibition attenuated the CCK-8-induced p-JNK activation. Application of CCK-8 enhanced the action potential firing rate of DRG neurons and elicited mechanical and thermal pain hypersensitivity in mice. These effects were mediated by CCK-BR and were occluded by IA blockade. CONCLUSION: Our findings indicate that CCK-8 attenuated IA through CCK-BR that is coupled to the Gßγ-dependent PI3K and c-Src-mediated JNK pathways, thereby enhancing the sensory neuronal excitability in DRG neurons and peripheral pain sensitivity in mice.


Subject(s)
CSK Tyrosine-Protein Kinase/metabolism , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Potassium Channel Blockers/pharmacology , Receptor, Cholecystokinin B/metabolism , Sensory Receptor Cells/cytology , Sensory Receptor Cells/drug effects , Animals , Ganglia, Spinal/cytology , Male , Mice , Mice, Inbred ICR , Nociception/drug effects , Pain/pathology , Pain/physiopathology , Sincalide/pharmacology
19.
Neurosci Bull ; 35(5): 791-801, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30980241

ABSTRACT

Chronic visceral hypersensitivity is an important type of chronic pain with unknown etiology and pathophysiology. Recent studies have shown that epigenetic regulation plays an important role in the development of chronic pain conditions. However, the role of miRNA-325-5p in chronic visceral pain remains unknown. The present study was designed to determine the roles and mechanism of miRNA-325-5p in a rat model of chronic visceral pain. This model was induced by neonatal colonic inflammation (NCI). In adulthood, NCI led to a significant reduction in the expression of miRNA-325-5p in colon-related dorsal root ganglia (DRGs), starting to decrease at the age of 4 weeks and being maintained to 8 weeks. Intrathecal administration of miRNA-325-5p agomir significantly enhanced the colorectal distention (CRD) threshold in a time-dependent manner. NCI also markedly increased the expression of CCL2 (C-C motif chemokine ligand 2) in colon-related DRGs at the mRNA and protein levels relative to age-matched control rats. The expression of CXCL12, IL33, SFRS7, and LGI1 was not significantly altered in NCI rats. CCL2 was co-expressed in NeuN-positive DRG neurons but not in glutamine synthetase-positive glial cells. Furthermore, CCL2 was mainly expressed in isolectin B4-binding- and calcitonin gene-related peptide-positive DRG neurons but in few NF-200-positive cells. More importantly, CCL2 was expressed in miR-325-5p-positive DRG neurons. Intrathecal injection of miRNA-325-5p agomir remarkably reduced the upregulation of CCL2 in NCI rats. Administration of Bindarit, an inhibitor of CCL2, markedly raised the CRD threshold in NCI rats in a dose- and time-dependent manner. These data suggest that NCI suppresses miRNA-325-5p expression and enhances CCL2 expression, thus contributing to visceral hypersensitivity in adult rats.


Subject(s)
Chemokine CCL2/biosynthesis , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , MicroRNAs/biosynthesis , Visceral Pain/metabolism , Animals , Animals, Newborn , Chemokine CCL2/genetics , Colon/metabolism , Colon/pathology , Ganglia, Spinal/pathology , Hyperalgesia/genetics , Hyperalgesia/pathology , Male , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Rats , Rats, Sprague-Dawley , Transcription, Genetic/physiology , Up-Regulation/physiology , Visceral Pain/genetics , Visceral Pain/pathology
20.
Sci Rep ; 9(1): 3827, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846840

ABSTRACT

Src family of kinases (SFKs) has been found to play an important role in the regulation of nociception. However, how each member of this family acts in the central nervous system (CNS) structures involved in the relay and/or modulation of nociceptive signals, and thereby contributes to the formation and maintenance of pain hypersensitivity, is still a challenge. In this work, a combined study using biochemical, genetic and behavioral approaches was conducted. We found that the expression of activated SFKs in the hypothalamic arcuate nucleus (ARC) area was significantly increased following the development of inflammation induced by injection of complete freund's adjuvant (CFA) into the hind paw of rats. Furthermore, we identified that Src, but not Fyn or Lyn in the Src family, was activated, and that Src knockdown in the ARC area blocked the inflammation-induced increases in the expression of activated SFKs, the N-Methyl-D-aspartate receptor (NMDAR) GluN2B subunit and phosphorylated GluN2B at Y1472 in this region. Moreover, the CFA injection-induced allodynia and hyperalgesia, and the analgesic effect produced by systemic application of the SFK inhibitor, SU6656, were significantly diminished. However, the Src knockdown did not induce any change in the expression of activated SFKs  and the NMDAR GluN2B subunit in normal rats which were not injected with CFA. Neither the Src knockdown nor the systemic application of SU6656 affected the mechanical and thermal sensitivity of the normal rats. Thus, Src activation in the ARC may be a key event for formation and maintenance of pain hypersensitivity associated with peripheral inflammation.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Hyperalgesia/metabolism , Neurons/metabolism , src-Family Kinases/metabolism , Animals , Behavior, Animal/physiology , Cells, Cultured , Male , Nociception/physiology , Pain Measurement , Pain Threshold/physiology , Phosphorylation , Rats , Rats, Sprague-Dawley , src-Family Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...