Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Mar Drugs ; 22(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786603

ABSTRACT

Naturally occurring echinocandin B and FR901379 are potent antifungal lipopeptides featuring a cyclic hexapeptide nucleus and a fatty acid side chain. They are the parent compounds of echinocandin drugs for the treatment of severe fungal infections caused by the Candida and Aspergilla species. To minimize hemolytic toxicity, the native fatty acid side chains in these drug molecules are replaced with designer acyl side chains. The deacylation of the N-acyl side chain is, therefore, a crucial step for the development and manufacturing of echinocandin-type antibiotics. Echinocandin E (ECE) is a novel echinocandin congener with enhanced stability generated via the engineering of the biosynthetic machinery of echinocandin B (ECB). In the present study, we report the discovery of the first echinocandin E acylase (ECEA) using the enzyme similarity tool (EST) for enzymatic function mining across protein families. ECEA is derived from Streptomyces sp. SY1965 isolated from a sediment collected from the Mariana Trench. It was cloned and heterologously expressed in S. lividans TK24. The resultant TKecea66 strain showed efficient cleavage activity of the acyl side chain of ECE, showing promising applications in the development of novel echinocandin-type therapeutics. Our results also provide a showcase for harnessing the essentially untapped biodiversity from the hadal ecosystems for the discovery of functional molecules.


Subject(s)
Antifungal Agents , Echinocandins , Streptomyces , Streptomyces/enzymology , Streptomyces/genetics , Echinocandins/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Amidohydrolases/metabolism , Fungal Proteins
2.
Mar Drugs ; 22(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38393045

ABSTRACT

The natural product α-cyclopiazonic acid (α-CPA) is a very potent Ca2+-ATPase inhibitor. The CPA family of compounds comprise over 80 chemical entities with at least five distinct skeletons. While α-CPA features a canonical 6/5/6/5/5 skeleton, the 6/5/6/5 skeleton is the most prevalent among the CPA family. However, the origin of the unique tetracyclic skeleton remains unknown. The 6/5/6/5-type CPAs may derive from a precursor of acetoacetyl-l-tryptophan (AATrp) generated from a hypothetic thioesterase-like pathway. Alternatively, cleavage of the tetramic acid ring would also result in the formation of the 6/5/6/5 scaffold. Aspergillus oryzae HMP-F28 is a marine sponge-associated filamentous fungus known to produce CPAs that act as primary neurotoxins. To elucidate the origin of this subfamily of CPAs, we performed homologous recombination and genetic engineering experiments on strain HMP-F28. Our results are supportive of the ring cleavage pathway through which the tetracyclic 6/5/6/5-type CPAs are generated from 6/5/6/5/5-type pentacyclic CPAs.


Subject(s)
Aspergillus oryzae , Indoles , Indoles/chemistry , Aspergillus oryzae/metabolism
3.
Sensors (Basel) ; 23(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38005624

ABSTRACT

To overcome the difficulty in tracking the trajectory of an inspection robot inside a transformer, this paper proposes a distributed model predictive control method. First, the kinematics and dynamics models of a robot in transformer oil are established based on the Lagrange equation. Then, by using the nonlinear model predictive control method and following the distributed control theory, the motion of a robot in transformer oil is decoupled into five independent subsystems. Based on this, a distributed model predictive control (DMPC) method is then developed. Finally, the simulation results indicate that a robot motion control system based on DMPC achieves high tracking accuracy and robustness with reduced computing complexity, and it provides an effective solution for the motion control of robots in narrow environments.

4.
Front Physiol ; 13: 824203, 2022.
Article in English | MEDLINE | ID: mdl-35250625

ABSTRACT

The Tachinidae are natural enemies of many lepidopteran and coleopteran pests of crops, forests, and fruits. However, host-tachinid parasitoid interactions have been largely unexplored. In this study, we investigated the effects of tachinids on host biological traits, using Exorista japonica, a generalist parasitoid, and the silkworm Bombyx mori, its lepidopteran host, as models. We observed that E. japonica parasitoidism did not affect silkworm larval body weight gain and cocooning rate, whereas they caused shortened duration of molting from the final instar to the pupal stage, abnormal molting from larval to pupal stages, and a subsequent decrease in host emergence rate. Moreover, a decrease in juvenile hormone (JH) titer and an increase in 20-hydroxyecdysone (20E) titer in the hemolymph of parasitized silkworms occurred. The transcription of JH and 20E responsive genes was downregulated in mature parasitized hosts, but upregulated in parasitized prepupae while Fushi tarazu factor 1 (Ftz-f1), a nuclear receptor essential in larval ecdysis, showed dramatically reduced expression in parasitized hosts at both the mature and prepupal stages. Moreover, the transcriptional levels of BmFtz-f1 and its downstream target genes encoding cuticle proteins were downregulated in epidermis of parasitized hosts. Meanwhile, the content of trehalose was decreased in the hemolymph, while chitin content in the epidermis was increased in parasitized silkworm prepupae. These data reveal that the host may fine-tune JH and 20E synthesis to shorten developmental duration to combat established E. japonica infestation, while E. japonica silences BmFtz-f1 transcription to inhibit host pupation. This discovery highlights the novel target mechanism of tachinid parasitoids and provides new clues to host/tachinid parasitoid relationships.

5.
Environ Sci Technol ; 55(17): 11680-11692, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34374532

ABSTRACT

Microplastics (MPs) are an emerging threat to ecological conservation and biodiversity; however, little is known of the types and possible impacts of MPs in pollinators. To examine whether MPs were present in honeybees, we analyzed the honeybee samples collected in fields from six provinces in China. Four types MPs were identified in honeybee including polystyrene (PS) by Raman spectroscopic analysis, and these plastic polymers were detected in 66.7% bee samples. Then, we assessed the physical and biological impacts of PS of three sizes (0.5, 5, and 50 µm) on bees for 21 days. Next, we measured how the presence of PS affected the Israeli acute paralysis virus proliferation, a small RNA virus associated with bee colony decline. Experimental evidence showed that a large mass of PS was ingested and accumulated within the midgut and enhanced the susceptibility of bees to viral infection. Not only histological analysis showed that PS, especially 0.5 µm PS, damaged the midgut tissue and was subsequently transferred to the hemolymph, trachea, and Malpighian tubules, but also qPCR and transcriptomic results indicated that genes correlated with membrane lipid metabolism, immune response, detoxification, and the respiratory system were significantly regulated after PS ingestion. Our results highlight neglected MP contamination to the bees, a pollination ecosystem stressed by the anthropogenic pollution, and have implications for human health via ingestion of bee products.


Subject(s)
Microplastics , Virus Diseases , Animals , Bees , Eating , Ecosystem , Plastics , Polystyrenes
6.
Viruses ; 12(1)2019 12 19.
Article in English | MEDLINE | ID: mdl-31861567

ABSTRACT

Since the discovery that honey bee viruses play a role in colony decline, researchers have made major breakthroughs in understanding viral pathology and infection processes in honey bees. Work on virus transmission patterns and virus vectors, such as the mite Varroa destructor, has prompted intense efforts to manage honey bee health. However, little is known about the occurrence of honey bee viruses in bee predators, such as vespids. In this study, we characterized the occurrence of 11 honey bee viruses in five vespid species and one wasp from four provinces in China and two vespid species from four locations in France. The results showed that all the species from China carried certain honey bee viruses, notably Apis mellifera filamentous virus (AmFV), Deformed wing virus (DWV), and Israeli acute paralysis virus (IAPV); furthermore, in some vespid colonies, more than three different viruses were identified. In France, DWV was the most common virus; Sacbrood virus (SBV) and Black queen cell virus (BQCV) were observed in one and two samples, respectively. Phylogenetic analyses of IAPV and BQCV sequences indicated that most of the IAPV sequences belonged to a single group, while the BQCV sequences belonged to several groups. Additionally, our study is the first to detect Lake Sinai virus (LSV) in a hornet from China. Our findings can guide further research into the origin and transmission of honey bee viruses in Vespidae, a taxon of ecological, and potentially epidemiological, relevance.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/virology , Bees/parasitology , Bees/virology , Insect Vectors/virology , Insect Viruses/classification , Insect Viruses/genetics , Phylogeny , Animals , High-Throughput Nucleotide Sequencing , Phylogeography
7.
Int J Food Microbiol ; 250: 59-67, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28371716

ABSTRACT

Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile Daqu.


Subject(s)
Alcoholic Beverages/microbiology , Aspergillus/isolation & purification , Bacillus licheniformis/metabolism , Fermentation/physiology , Flavoring Agents/metabolism , Pichia/isolation & purification , Saccharomycetales/isolation & purification , Alcoholic Beverages/analysis , Amylases/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Metabolome/physiology , Microbiota/physiology
8.
Appl Biochem Biotechnol ; 167(2): 358-66, 2012 May.
Article in English | MEDLINE | ID: mdl-22552805

ABSTRACT

In order to understand the product inhibition of enzymatic lignocellulose hydrolysis, the enzymatic hydrolysis of pretreated rice straw was carried out over an enzyme loading range of 2 to 30 FPU/g substrate, and the inhibition of enzymatic hydrolysis was analyzed kinetically based on the reducing sugars produced. It was shown that glucose, xylose, and arabinose were the main reducing sugar components contained in the hydrolysate. The mass ratio of glucose, xylose, and arabinose to the total reducing sugars was almost constant at 52.0%, 29.7% and 18.8%, respectively, in the enzyme loading range. The reducing sugars exerted competitive inhibitory interferences to the enzymatic hydrolysis. Glucose, xylose, and arabinose had a dissociation constant of 1.24, 0.54 and 0.33 g/l, respectively. The inhibitory interferences by reducing sugars were superimposed on the enzymatic hydrolysis. The enzymatic hydrolysis could be improved by the removal of the produced reducing sugars from hydrolysate.


Subject(s)
Cellulase/chemistry , Fungal Proteins/chemistry , Lignin/metabolism , Oryza/chemistry , Oryza/metabolism , Trichoderma/enzymology , Biocatalysis , Cellulase/metabolism , Fungal Proteins/metabolism , Glucose/metabolism , Hydrolysis , Kinetics , Lignin/chemistry , Trichoderma/chemistry , Xylose/metabolism
9.
Appl Biochem Biotechnol ; 163(1): 153-61, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20602179

ABSTRACT

Cellulase and xylanase from Trichoderma reesei were immobilized simultaneously on Eudragit L-100, a reversibly soluble polymer. The effects of polymer concentration and polymer precipitation pH on enzyme activity recovery were investigated at an enzyme complex concentration of 1%. The immobilization mechanism of cellulase and xylanase on the polymer was discussed. An activity recovery of 75% and 59% was obtained for the cellulase and the xylanase, respectively, under the condition of a polymer concentration at 2% and a polymer precipitation pH at 4.0. Most zymoproteins might be connected to the polymer by electrostatic attraction in a medium of pH 4.8. In addition, the covalent coupling between the zymoproteins and the polymer was demonstrated by the infrared spectrograms. It was suggested that dehydration-condensation reaction occurred between the zymoproteins and the polymer during the immobilization.


Subject(s)
Cellulase/chemistry , Fungal Proteins/chemistry , Polymers/chemistry , Trichoderma/enzymology , Xylan Endo-1,3-beta-Xylosidase/chemistry , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Trichoderma/chemistry
10.
Appl Biochem Biotechnol ; 160(8): 2449-57, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19669940

ABSTRACT

An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.


Subject(s)
Alkalies/chemistry , Sodium Hydroxide/chemistry , Zea mays , Biomass , Carbohydrates/chemistry , Cellulose/chemistry , Cellulose/metabolism , Hydrolysis , Lignin/chemistry , Oxidation-Reduction , Polysaccharides/chemistry , Polysaccharides/metabolism , Zea mays/chemistry , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL