Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
Food Res Int ; 188: 114492, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823875

ABSTRACT

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Subject(s)
Curcumin , Food Preservation , Perciformes , Silicon Dioxide , Curcumin/pharmacology , Curcumin/chemistry , Animals , Silicon Dioxide/chemistry , Food Preservation/methods , Nanoparticles , Seafood , Solubility , Singlet Oxygen , Photolysis , Humans
2.
Surg Endosc ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874609

ABSTRACT

BACKGROUND: Liver surgery is associated with a significant hospital stay regardless the type of liver resection. A large incision is essential for open liver surgery which is a major factor in the course of the patient's recovery. For patients with small parenchyma liver lesions requiring surgical resection, robotic surgery potentially offers the opportunity to transform the patient's post-operative course. A day-case robotic liver resection pathway was formulated and implemented at our institution when patients were planned for discharge within 24 h of admission for liver surgery. METHODS: Single surgeon case series of cases performed at a tertiary hepatobiliary and pancreatic centre between September 2022 and November 2023. The inclusion criteria were non-anatomical wedge resections, < 2 anatomical segmental resections, left lateral hepatectomy and minimally invasive surgery. RESULTS: This is the first series of robotic day-case minor liver resection in the United Kingdom. 20 patients were included in this case series. The mean operative time was 86.6 ± 30.9 min and mean console time was 58.6 ± 24.5 min. Thirteen patients (65%) were discharged within 24 h of surgery. The main cause of hospitalisation beyond 24 h was inadequate pain relief. There were no Clavien-Dindo grade III or above complications, no 30-day readmission and 90-day mortalities. CONCLUSION: This case series demonstrates that robotic day-case liver resection is safe and feasible. Robust follow-up pathways must be in place to allow for the safe implementation of this approach, to monitor for any complications and to allow intervention as required in a timely manner.

3.
Front Psychiatry ; 15: 1397706, 2024.
Article in English | MEDLINE | ID: mdl-38938464

ABSTRACT

Objectives: This study aims to evaluate the efficacy of repeated transcranial magnetic stimulation (rTMS) combined with fluoxetine in enhancing the early antidepressant response in first-episode adolescent depression cases, providing insights for patient diagnosis and treatment. Methods: One hundred and thirty-five adolescents experiencing their first depressive episode were randomly assigned to either a sham group treated with fluoxetine or to low or high repetitive transcranial magnetic stimulation (rTMS) groups receiving both rTMS and fluoxetine. Therapeutic effects were assessed by comparing changes in Hamilton Depression Scale (HAMD-17) scores, cognitive function scores from the Wisconsin Card Sorting Test (WCST), and Clinical Global Impression-improvement (CGI-I) scores, along with recording adverse reactions. Results: The total effectiveness rate in the rTMS groups (Low, 95.56%; High, 97.78%) was significantly higher than in the Sham rTMS group (80%) (F = 11.15, P<0.0001). Post-treatment, not only the Low but also the High rTMS group exhibited more significant reductions in HAMD-17 (Low, 21.05; High, 21.45) and CGI-I scores (Low, 3.44; High, 3.60) compared to the Sham rTMS group (HAMD-17, 16.05; CGI-I, 2.57) (two weeks: F = 7.889, P = 0.0006; four weeks: F = 15.900, P<0.0001). Additionally, the two rTMS groups exhibited fewer erroneous responses and persistent errors in the WCST and completed more WCST categorizations than the Sham rTMS group. There was no significant difference in adverse reaction rates between the groups (F=4.421, P=0.0794). Conclusions: The combination of fluoxetine with rTMS demonstrates enhanced therapeutic effectiveness in treating adolescent depression, effectively controlling disease progression, reducing depressive symptoms, and improving cognitive function, making it a valuable clinical approach.

4.
Chemosphere ; 362: 142468, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821125

ABSTRACT

Combustion of organic solid wastes releases phenolic compounds which can act as precursors in the formation of environmentally persistent free radicals (EPFRs) in the post-flame, cooling zone of waste combustion. The study investigated the generation mechanism of EPFRs from phenolic compounds catalyzed by transition metals in air atmosphere under simulated combustion conditions. Representative combustion-derived phenolic compounds were used, and SiO2 particulates containing different mass ratio of Fe2O3 were synthesized as carriers. EPFRs formed had g-factors between 1.9998 and 2.0066, indicating phenoxyl-, cyclopentadienyl-, and semiquinone-type radicals, along with paramagnetic F-centers. The promotion effect of phenolic compounds on EPFR formation during heating decreased as catechol > hydroquinone > phenol > p-cresol. This trend is related to hydroxyl groups and activation energy. In particular, catechol chemically adsorbed on Fe2O3 at 600 K led to the formation of EPFRs with relatively high spin concentrations (up to 1.28 × 1017 spin/g). Higher Fe2O3 concentrations promoted the transformation of phenoxyl-type radicals into cyclopentadienyl-type and paramagnetic F-centers. However, as the Fe2O3 loading increased from 1.25% to 5%, the density of EPFRs decreased. The findings related to the influence of various precursors and Fe2O3 concentration on EPFR formation provide valuable insights for estimating EPFR generation and associated risk during combustion processes.

5.
Se Pu ; 42(4): 380-386, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38566427

ABSTRACT

The gas chromatography retention index (RI) is an important parameter for the identification of different types of compounds in the field of chromatographic analysis; however, the experimental collection of RI values is a extremely cumbersome process. Thus, there is an urgent need for the establishment of a simple, efficient, and accurate model for the prediction of the RI values of compounds. In this study, first, the experimental RI values for 60 plant essential oil constituents were obtained. Next, a model describing the hologram quantitative structure-activity relationship (HQSAR) between the structural properties of the essential oil constituents and their RI values was investigated and constructed. The optimal HQSAR model was established by setting the model parameters "fragment size", "fragment distinction", "hologram length" and "principal components" to "1-4", "C, Ch", "199", and "4", respectively. Finally, the predictive ability of the model was verified using external test set validation and leave-one-out cross-validation (LOO-CV). The experimental results were as follows, the root mean square error of prediction (RMSEP), predictive determination coefficient ([Formula: see text]), concordance correlation coefficient (CCC), and mean relative error (MRE) for external test set validation were 40.45, 0.984, 0.968, and 2.20%, respectively. Meanwhile, the root mean square error of cross validation (RMSECV) and MRE for LOO-CV were 72.56 and 4.17%, respectively. These findings demonstrate that the established HQSAR model has a good predictive ability and can accurately predict the RI values of plant essential oil constituents. In addition, the molecular contribution maps of the HQSAR model revealed that the RI values of aromatic compounds increase when hydroxyl groups are connected to their alkyl chains. Aliphatic compounds feature long chain alkyl groups, which can lead to an increase in RI values. The above phenomena highlight the promising application prospects of HQSAR for studying the RI values of plant essential oil constituents. Therefore, this study provides a reliable theoretical basis for predicting the RI values of other essential oil constituents.

6.
Soft Matter ; 20(12): 2812-2822, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446214

ABSTRACT

The droplet lossless directional motion control on slippery surfaces holds immense promise for applications in microfluidic chips, hazardous substance detection, chemical dispensing, etc. However, a significant challenge in this domain lies in efficiently developing soft, slippery surfaces with large-range anisotropic wettability and compatibility for curved scenarios. This study addressed this challenge through a quick 3D printing-assisted method to produce soft, ridged-slippery surfaces (SRSSs) as the droplet manipulation platform. The SRSSs demonstrated substantial anisotropic rolling resistances, measuring 116.9 µN in the perpendicular direction and 7.7 µN in the parallel direction, exhibiting a ratio of 15.2. Combining several extents of anisotropic wettability on a soft substrate could realize diverse reagent manipulation functions. Furthermore, these SRSSs showcased high compatibility with various droplet constituents, impressive liquid impact resistance, self-repair capability, and mechanical durability and thermal durability, ensuring exceptional applicability. As proofs of concept, the SRSSs were successfully applied in droplet control and classification for heavy metal ion detection, mechanical arm-based droplet grab and release, and cross-species transport, showcasing their remarkable versatility, compatibility, and practicality in advanced droplet microfluidic chips and water harvesting applications.

7.
Food Chem X ; 21: 101234, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38420509

ABSTRACT

Tea varieties play a crucial role on the quality formation of matcha. This research aimed to examine the impact of four specific tea plant varieties (Okumidori, Longjing 43, Zhongcha108, and E'Cha 1) on various aspects of matcha, including sensory evaluation, major components, color quality, volatile and non-volatile metabolomic profiles. The findings revealed that the levels of tea polyphenols, ester catechins, nonester catechins, and amino acids varied among these four varieties. Notably, 177 significant different metabolites, such as phenolic acids, flavonoids, tannins, alkaloids were identified among 1383 non-volatile compounds. In addition, 97 key aroma-active compounds were identified based on their odor activity value exceeding 1. Aldehydes, heterocyclic compounds, and ketones were closely associated with the formation of volatile metabolites. Overall, this study enhances our understanding of how different tea plant varieties impact the quality of matcha, and can provide valuable guidance for improving matcha varieties in a favorable direction.

8.
Aging (Albany NY) ; 16(4): 3934-3954, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38382106

ABSTRACT

OBJECTIVE: The enzyme Aspartyl tRNA synthetase 2 (DARS2) is a crucial enzyme in the mitochondrial tRNA synthesis pathway, playing a critical role in maintaining normal mitochondrial function and protein synthesis. However, the role of DARS2 in ESCA is unclear. MATERIALS AND METHODS: Transcriptional data of pan-cancer and ESCA were downloaded from UCSC XENA, TCGA, and GEO databases to analyze the differential expression of DARS2 between tumor samples and normal samples, and its correlation with clinicopathological features of ESCA patients. R was used for GO, KEGG, and GSEA functional enrichment analysis of DARS2 co-expression and to analyze the connection of DARS2 with glycolysis and m6A-related genes. In vitro experiments were performed to assess the effects of interfering with DARS2 expression on ESCA cells. TarBase v.8, mirDIP, miRTarBase, ENCORI, and miRNet databases were used to analyze and construct a ceRNA network containing DARS2. RESULTS: DARS2 was overexpressed in various types of tumors. In vitro experiments confirmed that interfering with DARS2 expression significantly affected the proliferation, migration, apoptosis, cell cycle, and glycolysis of ESCA cells. DARS2 may be involved in multiple biological pathways related to tumor development. Furthermore, correlation and differential analysis revealed that DARS2 may regulate ESCA m6A modification through its interaction with METTL3 and YTHDF1. A ceRNA network containing DARS2, DLEU2/has-miR-30a-5p/DARS2, was successfully predicted and constructed. CONCLUSIONS: Our findings reveal the upregulation of DARS2 in ESCA and its association with clinical features, glycolysis pathway, m6A modification, and ceRNA network. These discoveries provide valuable insights into the molecular mechanisms underlying ESCA.


Subject(s)
Aspartate-tRNA Ligase , Carcinoma , Esophageal Neoplasms , Humans , Esophageal Neoplasms/genetics , Apoptosis/genetics , Cell Cycle , Methyltransferases
9.
Nat Commun ; 15(1): 1131, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326351

ABSTRACT

Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Furthermore, with the assistance of LiAIDS, the diagnostic accuracy of all radiologists improved. For benign and malignant lesions, junior radiologists' F1-scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of 13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can serve as a routine diagnostic tool and enhance the diagnostic capabilities of radiologists for liver lesions.


Subject(s)
Artificial Intelligence , Liver Neoplasms , Humans , Retrospective Studies , Radiologists , Liver Neoplasms/diagnostic imaging
10.
Food Chem X ; 21: 101207, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38370300

ABSTRACT

As the low water solubility of gallic acid (GA), its biological activities such as water-based antioxidant effect may be greatly reduced. Therefore, GA-loaded nanocomposites (F-SiO2@GA) with high water solubility were synthesized via solvent evaporation using food-grade silica (F-SiO2) as carriers in this work. The assessment of antioxidant capacity revealed that F-SiO2@GA exhibited considerably greater free-radical scavenging ability than free GA and the physical mixture of F-SiO2 and GA. In the photooxidation experiment of food-grade gardenia yellow pigment (GYP), F-SiO2@GA showed a notable antioxidant effect on GYP solution. Additionally, in the storage experiment on chilled whiteleg shrimp (Litopenaeus vannamei) treated with F-SiO2@GA, pH, total volatile basic nitrogen (TVBN), and thiobarbituric acid reactive substance (TBARS) values were effectively inhibited. In conclusion, the internal encapsulation of GA effectively prevented the self-aggregation phenomenon, thereby facilitating the exposure of its active phenolic hydroxyl group and significantly enhancing its water-based biological activity.

11.
Cancers (Basel) ; 16(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38275893

ABSTRACT

INTRODUCTION: Neoadjuvant treatment (NAT) for borderline (BD) or locally advanced (LA) primary pancreatic cancer (PDAC) is now a widely adopted approach. We present a case series of patients who have achieved a complete pathological response of the primary tumour on final histology following neoadjuvant chemotherapy +/- chemoradiation and radical surgery. METHODS: Patients who underwent radical pancreatic resection following neoadjuvant treatment between March 2006 and March 2023 at a single institution were identified by retrospective case note review of a prospectively maintained database. RESULTS: Ten patients were identified to have a complete primary pathological response (ypT0) on postoperative histology. Before treatment, five patients were considered BD and five were LA according to National Comprehensive Cancer Network guidelines. All patients underwent staging Computed Tomography (CT) and nine underwent 18Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET/CT) imaging, with a mean maximum standardized uptake value (SUVmax) of the primary lesion at 6.14 ± 1.98 units. All patients received neoadjuvant chemotherapy, and eight received further chemoradiotherapy prior to resection. Mean pre- and post-neoadjuvant treatment serum Ca19-9 was 148.0 ± 146.3 IU/L and 18.0 ± 18.7 IU/L, respectively (p = 0.01). The mean duration of NAT was 5.6 ± 1.7 months. The mean time from completion of NAT to surgery was 13.1 ± 8.3 weeks. The mean lymph node yield was 21.1 ± 10.4 nodes, with one patient found to have 1 lymph node involved. All resections were reported to be R0. The mean length of stay was 11.8 ± 6.2 days. At the time of analysis, one death was reported at 35 months postoperatively. Two cases of recurrence were reported at 16 months (surgical bed) and 33 months (pulmonary). All other patients remain alive and under active surveillance. The current overall survival is 26.6 ± 20.7 months and counting. CONCLUSIONS: Complete primary pathological response is uncommon but possible following neoadjuvant treatment in patients with PDAC. Further work to identify the common denominator within this unique cohort may lead to advances in the therapeutic approach and offer hope for patients diagnosed with borderline or locally advanced pancreatic ductal adenocarcinoma.

12.
Environ Res ; 247: 118167, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38262514

ABSTRACT

Sewage sludge incineration ash (SSIA) is rich in phosphorus (P), thus being considered as a reliable source of phosphorus recovery. Different P species behaved significant bioavailability. Based on this, a comprehensive investigation into the bioavailability transition path of P species during sewage sludge (SS) incineration was conducted. P predominantly existed in the form of inorganic phosphorus (IP) in SS with a higher concentration of non-apatite inorganic phosphorus (NAIP) and less concentration of apatite inorganic phosphorus (AP). During the SS incineration process, OP existed in the flocs and cell structures of SS underwent destruction, the released P then combined with metal elements such as Ca, Mg, Fe, and Al to form AP species (Ca/Mg-P) and NAIP species (Fe/Al/Mn-P), and the NAIP decomposition to release into gas phase. This was the initial step for enhancing the bioavailability of P species. As temperature increased and the incineration process progressed, the low-temperature-resistant NAIP dissociated, and the metal-binding sites of Al, Fe and Mn in NAIP species were gradually replaced by the Ca and Mg thus forming thermal stability AP species (Ca/Mg-P, such as CaHPO4, Ca2PO4Cl, and Mg3(PO4)2 et al.). This step was crucial for the bioavailability improvement of P species during the incineration process. Therefore, the IP proportions in TP were extremely high (>98%), and this value gradually increased as incineration temperature raised. The higher incineration temperature, the lower NAIP concentration and higher AP concentration. Besides, additives such as coal/rice husk/eggshell played a significant affect. Additives wither higher Ca content were inclined to react with P to form Ca/Mg-P (AP), while the presence of SO2 would react with Ca metals to form CaSO4 thus inhibiting the formation of AP species (such as CaHPO4 and CaPO4Cl). This results could provide theoretical support for the efficient and directional migration of P during sewage sludge incineration.


Subject(s)
Phosphorus , Sewage , Biological Availability , Incineration , Hot Temperature
13.
Angew Chem Int Ed Engl ; 63(10): e202318338, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38230982

ABSTRACT

Carbon-based single-atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon-based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave-assisted rapid pyrolysis method is developed to afford carbon-based SACs within 3 min without inert gas protection. The obtained carbon-based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single-atom Ni implanted N-doped carbon (Ni1 -N-C) derived from a Ni-doped metal-organic framework (Ni-ZIF-8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO ) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1 -N-C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large-scale synthesis of SACs as well as other carbon-based materials for efficient catalysis.

14.
Exp Hematol Oncol ; 12(1): 101, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041102

ABSTRACT

Differentiating between pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) is crucial for the appropriate course of treatment, especially with advancements in the role of neoadjuvant chemotherapies for PDAC, compared to CCA. Furthermore, benign pancreaticobiliary diseases can mimic malignant disease, and indeterminate lesions may require repeated investigations to achieve a diagnosis. As bile flows in close proximity to these lesions, we aimed to establish a bile-based microRNA (miRNA) signature to discriminate between malignant and benign pancreaticobiliary diseases. We performed miRNA discovery by global profiling of 800 miRNAs using the NanoString nCounter platform in prospectively collected bile samples from malignant (n = 43) and benign (n = 14) pancreaticobiliary disease. Differentially expressed miRNAs were validated by RT-qPCR and further assessed in an independent validation cohort of bile from malignant (n = 37) and benign (n = 38) pancreaticobiliary disease. MiR-148a-3p was identified as a discriminatory marker that effectively distinguished malignant from benign pancreaticobiliary disease in the discovery cohort (AUC = 0.797 [95% CI 0.68-0.92]), the validation cohort (AUC = 0.772 [95% CI 0.66-0.88]), and in the combined cohorts (AUC = 0.752 [95% CI 0.67-0.84]). We also established a two-miRNA signature (miR-125b-5p and miR-194-5p) that distinguished PDAC from CCA (validation: AUC = 0.815 [95% CI 0.67-0.96]; and combined cohorts: AUC = 0.814 [95% CI 0.70-0.93]). Our research stands as the largest, multicentric, global profiling study of miRNAs in the bile from patients with pancreaticobiliary disease. We demonstrated their potential as clinically useful diagnostic tools for the detection and differentiation of malignant pancreaticobiliary disease. These bile miRNA biomarkers could be developed to complement current approaches for diagnosing pancreaticobiliary cancers.

15.
Neoplasia ; 46: 100945, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976569

ABSTRACT

Obesity and associated nonalcoholic steatohepatitis (NASH) are on the rise globally. NASH became an important driver of hepatocellular carcinoma (HCC) in recent years. Activation of the central metabolic regulator mTOR (mechanistic target of rapamycin) is frequently observed in HCCs. However, mTOR inhibition failed to improve the outcome of HCC therapies, demonstrating the need for a better understanding of the molecular and functional consequences of mTOR blockade. We established a murine NASH-driven HCC model based on long-term western diet feeding combined with hepatocellular mTOR-inactivation. We evaluated tumor load and whole-body fat percentage via µCT-scans, analyzed metabolic blood parameters and tissue proteome profiles. Additionally, we used a bioinformatic model to access liver and HCC mitochondrial metabolic functions. The tumor burden was massively increased via mTOR-knockout. Several signs argue for extensive metabolic reprogramming of glucose, fatty acid, bile acid and cholesterol metabolism. Kinetic modeling revealed reduced oxygen consumption in KO-tumors. NASH-derived HCC pathogenesis is driven by metabolic disturbances and should be considered separately from those caused by other etiologies. We conclude that mTOR functions as tumor suppressor in hepatocytes especially under long-term western diet feeding. However, some of the detrimental consequences of this diet are attenuated by mTOR blockade.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , TOR Serine-Threonine Kinases , Tumor Burden
16.
Cancers (Basel) ; 15(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38001752

ABSTRACT

Technical limitations of laparoscopic distal pancreatectomy (LDP), in comparison to robotic distal pancreatectomy (RDP), may translate to high conversion rates and morbidity. LDP and RDP procedures performed between December 2008 and January 2023 in our tertiary referral hepatobiliary and pancreatic centres were analysed and compared with regard to short-term outcomes. A total of 62 consecutive LDP cases and 61 RDP cases were performed. There was more conversion to open surgeries in the laparoscopic group compared with the robotic group (21.0% vs. 1.6%, p = 0.001). The LDP group also had a higher rate of postoperative complications (43.5% vs. 23.0%, p = 0.005). However, there was no significant difference between the two groups in terms of major complication or pancreatic fistular after operations (p = 0.20 and p = 0.71, respectively). For planned spleen-preserving operations, the RDP group had a shorter mean operative time (147 min vs. 194 min, p = 0.015) and a reduced total length of hospital stay compared with the LDP group (4 days vs. 7 days, p = 0.0002). The failure rate for spleen preservation was 0% in RDP and 20% (n = 5/25) in the LDP group (p = 0.009). RDP offered a better method for splenic preservation with Kimura's technique compared with LDP to avoid the risk of splenic infarction and gastric varices related to ligation and division of splenic pedicles. RDP should be the standard operation for the resection of pancreatic tumours at the body and tail of the pancreas without involving the celiac axis or common hepatic artery.

17.
J Am Chem Soc ; 145(44): 24230-24239, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37890005

ABSTRACT

Developing an electrocatalyst platform that can control the interplay among activity, selectivity, and stability at atomic precision remains a grand challenge. Here, we have synthesized highly crystalline polymetallophthalocyanines (pMPcs, M = Fe, Co, Ni, and Cu) through the annulation of tetracyanobenzene in the presence of transition metals. The conjugated, conductive, and stable backbones with precisely installed metal sites render pMPcs a unique platform in electrochemical catalysis, where tunability emerges from long-range interactions. The construction of pCoNiPc with a Co and Ni dual-site integrates the advantageous features of pCoPc and pNiPc in electrocatalytic CO2 reduction through electronic communication of the dual-site with an unprecedented long atomic separation of ≥14 chemical bonds. This integration provides excellent activity (current density, j = -16.0 and -100 mA cm-2 in H-type and flow cell, respectively), selectivity (CO Faraday efficiency, FECO = 94%), and stability (>10 h), making it one of the best-performing reticular materials.

18.
ACS Nano ; 17(15): 14619-14631, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37470391

ABSTRACT

Biosensors based on graphene field effect transistors (GFETs) have the potential to enable the development of point-of-care diagnostic tools for early stage disease detection. However, issues with reproducibility and manufacturing yields of graphene sensors, but also with Debye screening and unwanted detection of nonspecific species, have prevented the wider clinical use of graphene technology. Here, we demonstrate that our wafer-scalable GFETs array platform enables meaningful clinical results. As a case study of high clinical relevance, we demonstrate an accurate and robust portable GFET array biosensor platform for the detection of pancreatic ductal adenocarcinoma (PDAC) in patients' plasma through specific exosomes (GPC-1 expression) within 45 min. In order to facilitate reproducible detection in blood plasma, we optimized the analytical performance of GFET biosensors via the application of an internal control channel and the development of an optimized test protocol. Based on samples from 18 PDAC patients and 8 healthy controls, the GFET biosensor arrays could accurately discriminate between the two groups while being able to detect early cancer stages including stages 1 and 2. Furthermore, we confirmed the higher expression of GPC-1 and found that the concentration in PDAC plasma was on average more than 1 order of magnitude higher than in healthy samples. We found that these characteristics of GPC-1 cancerous exosomes are responsible for an increase in the number of target exosomes on the surface of graphene, leading to an improved signal response of the GFET biosensors. This GFET biosensor platform holds great promise for the development of an accurate tool for the rapid diagnosis of pancreatic cancer.


Subject(s)
Biosensing Techniques , Carcinoma, Pancreatic Ductal , Exosomes , Graphite , Pancreatic Neoplasms , Humans , Reproducibility of Results , Transistors, Electronic , Pancreatic Neoplasms/diagnosis , Biosensing Techniques/methods , Carcinoma, Pancreatic Ductal/diagnosis , Pancreatic Neoplasms
19.
Adv Mater ; 35(39): e2302512, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421606

ABSTRACT

While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > â”€Br > â”€NA (naphthalene) > â”€OCH3  > â”€Cl > â”€NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1  h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.

20.
Environ Toxicol ; 38(9): 2204-2218, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37300850

ABSTRACT

Ionic liquids (ILs) are thought to have negative effects on human health. Researchers have explored the effects of ILs on zebrafish development during the early stages, but the intergenerational toxicity of ILs on zebrafish development has rarely been reported. Herein, parental zebrafish were exposed to different concentrations (0, 12.5, 25, and 50 mg/L) of [Cn mim]NO3 (n = 2, 4, 6) for 1 week. Subsequently, the F1 offspring were cultured in clean water for 96 h. [Cn mim]NO3 (n = 2, 4, 6) exposure inhibited spermatogenesis and oogenesis in F0 adults, even causing obvious lacunae in the testis and atretic follicle oocytes in ovary. After parental exposure to [Cn mim]NO3 (n = 2, 4, 6), the body length and locomotor behavior were measured in F1 larvae at 96 hours post-fertilization (hpf). The results showed that the higher the concentration of [Cn mim]NO3 (n = 2, 4, 6), the shorter the body length and swimming distance, and the longer the immobility time. Besides, a longer alkyl chain length of [Cn mim]NO3 had a more negative effect on body length and locomotor behavior. RNA-seq analysis revealed several downregulated differentially expressed genes (DEGs)-grin1b, prss1, gria3a, and gria4a-enriched in neurodevelopment-related pathways, particularly the pathway for neuroactive ligand-receptor interaction. Moreover, several upregulated DEGs, namely col1a1a, col1a1b, and acta2, were mainly associated with skeletal development. Expression of DEGs was tested by RT-qPCR, and the outcomes were consistent with those obtained from RNA-Seq. We provide evidence showing the effects of parental exposure to ILs on the regulation of nervous and skeletal development in F1 offspring, demonstrating intergenerational effects.


Subject(s)
Ionic Liquids , Water Pollutants, Chemical , Animals , Male , Female , Humans , Zebrafish/metabolism , Ionic Liquids/toxicity , Testis , Spermatogenesis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...