Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Nanobioscience ; 18(2): 128-135, 2019 04.
Article in English | MEDLINE | ID: mdl-30575542

ABSTRACT

This paper establishes the stability criteria for genetic regulatory networks with random disturbances. We assume the nonlinear feedback regulation function to satisfy the sector-like condition and the random perturbation to have a finite second-order moment. First, under the globally Lipschitz condition, the existence and uniqueness of solution to random genetic regulatory networks are considered by exploiting an iterative approximation method. Then, by feat of the random analysis method and matrix technique, sufficient conditions are given to guarantee the noise-to-state stability in mean and globally asymptotic stability in probability, respectively. At last, two simulation examples are exploited in order to verify the validity of the proposed theory.


Subject(s)
Gene Regulatory Networks , Models, Theoretical , Computer Simulation
2.
J Healthc Eng ; 2018: 6797102, 2018.
Article in English | MEDLINE | ID: mdl-30581550

ABSTRACT

Automatic segmentation and three-dimensional reconstruction of the liver is important for liver disease diagnosis and surgical treatment. However, the shape of the imaged 2D liver in each CT image changes dramatically across the slices. In all slices, the imaged 2D liver is connected with other organs, and the connected organs also vary across the slices. In many slices, the intensities of the connected organs are the same with that of the liver. All these facts make automatic segmentation of the liver in the CT image an extremely difficult task. In this paper, we propose a heuristic approach to segment the liver automatically based on multiple thresholds. The thresholds are computed based on the slope difference distribution that has been proposed and verified in the previous research. Different organs in the CT image are segmented with the automatically computed thresholds, respectively. Then, different segmentation results are combined to delineate the boundary of the liver robustly. After the boundaries of the 2D liver in all the slices are identified, they are combined to form the 3D shape of the liver with a global energy minimization function. Experimental results verified the effectiveness of all the proposed image processing algorithms in automatic and robust segmentation of the liver in CT images.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Liver/diagnostic imaging , Tomography, X-Ray Computed , Algorithms , Databases, Factual , Humans , Models, Statistical , Pattern Recognition, Automated , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...