Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
Exp Appl Acarol ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38695989

Parasites are typically concentrated on a few host individuals, and identifying the mechanisms underlying aggregated distribution can facilitate a more targeted control of parasites. We investigated the infestation patterns of hard ticks and chigger mites on two rodent species, the striped field mouse, Apodemus agrarius, and the lesser ricefield rat, Rattus losea, in Taiwan. We also explored abiotic and biotic factors that were important in explaining variation in the abundance of ticks and chiggers on rodent hosts. Ticks were more aggregated than chiggers on both rodent species. Factors important for the variation in parasitic loads, especially biotic factors, largely differed between ticks and chiggers. Variation partitioning analyses revealed that a larger proportion of variation in chiggers than in ticks can be explained, especially by abiotic factors. If, as proposed, the higher number of parasites in males is due to a larger range area or immunity being suppressed by testosterone, when A. agrarius males host more ticks, they are expected to also host more chiggers, given that chiggers adopt a similar host finding approach to that of ticks. Instead, the similar abundance of chiggers in male and female A. agrarius implies that a large home range or suppressed immunity does not predispose males to inevitably host more parasites. More variations were explained by abiotic than biotic factors, suggesting that controlling practices are more likely to be successful by focusing on factors related to the environment instead of host traits. Our study indicated that the extent of parasitism is rarely determined by a sole factor, but is an outcome of complex interactions among animal physiology, animal behavior, characteristics of parasites, and the environments.

2.
Biomed Pharmacother ; 174: 116538, 2024 May.
Article En | MEDLINE | ID: mdl-38579401

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Ependymoglial Cells , Glaucoma , Histone Deacetylase Inhibitors , Histone Deacetylases , Mice, Inbred C57BL , Oxidative Stress , Animals , Oxidative Stress/drug effects , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Histone Deacetylase Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Mice , Histone Deacetylases/metabolism , Retina/drug effects , Retina/metabolism , Retina/pathology , Disease Models, Animal , Neuroprotective Agents/pharmacology , Male , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control
3.
Eur Thyroid J ; 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38241789

BACKGROUND: Intake of potassium iodide (KI) reduces the accumulation of radioactive iodine in the thyroid gland in the event of possible contamination by radioactive iodine released from a nuclear facility. The WHO has stated the need for research for optimal timing, appropriate dosing regimen and safety for repetitive iodine thyroid blocking (ITB). The French PRIODAC project, addressed all these issues, involving prolonged or repeated releases of radioactive iodine. Preclinical studies established an effective dose through pharmacokinetic modeling, demonstrating the safety of repetitive KI treatment without toxicity. SUMMARY: Recent preclinical studies have determined an optimal effective dose for repetitive administration, associated with pharmacokinetic modelling. The results show the safety and absence of toxicity of repetitive treatment with KI. Good laboratory practice level preclinical studies corresponding to individuals > 12 years have shown a safety margin established between animal doses without toxic effect. After approval from the French health authorities, the market authorization of the 2 tablets of KI-65mg/day was defined with a new dosing scheme of a daily repetitive intake of the treatment up to 7 days unless otherwise instructed by the competent authorities for all categories of population except pregnant women, and children under the age of 12 years. CONCLUSIONS: This new marketed authorization resulting from scientific-based evidence obtained as part of the PRIODAC project may serve as an example to further harmonize the application of KI for repetitive ITB in situations of prolonged radioactive release at the European and International levels, under the umbrella of the WHO.

4.
Mol Plant Microbe Interact ; 37(2): 112-126, 2024 Feb.
Article En | MEDLINE | ID: mdl-37903461

Several elicitors of plant defense have been identified and numerous efforts to use them in the field have been made. Exogenous elicitor treatments mimic the in planta activation of pattern-triggered immunity (PTI), which relies on the perception of pathogen-associated molecular patterns (PAMPs) such as bacterial flg22 or fungal chitins. Early transcriptional responses to distinct PAMPs are mostly overlapping, regardless of the elicitor being used. However, it remains poorly known if the same patterns are observed for metabolites and proteins produced later during PTI. In addition, little is known about the impact of a combination of elicitors on PTI and the level of induced resistance to pathogens. Here, we monitored Arabidopsis thaliana resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) following application of flg22 and chitosan elicitors, used individually or in combination. A slight, but not statistically significant increase in induced resistance was observed when the elicitors were applied together when compared with individual treatments. We investigated the effect of these treatments on the metabolome by using an untargeted analysis. We found that the combination of flg22 and chitosan impacted a higher number of metabolites and deregulated specific metabolic pathways compared with the elicitors individually. These results contribute to a better understanding of plant responses to elicitors, which might help better rationalize their use in the field. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Arabidopsis Proteins , Arabidopsis , Chitosan , Arabidopsis/microbiology , Plant Immunity , Chitosan/pharmacology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Metabolome , Pseudomonas syringae/physiology , Plant Diseases/microbiology , Gene Expression Regulation, Plant
5.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38069019

The aim of this study was to identify metabolomic signatures associated with the gliomagenesis pathway (IDH-mutant or IDH-wt) and tumor grade of diffuse gliomas (DGs) according to the 2021 WHO classification on frozen samples and to evaluate the diagnostic performances of these signatures in tumor samples that are formalin-fixed and paraffin-embedded (FFPE). An untargeted metabolomic study was performed using liquid chromatography/mass spectrometry on a cohort of 213 DG samples. Logistic regression with LASSO penalization was used on the frozen samples to build classification models in order to identify IDH-mutant vs. IDH-wildtype DG and high-grade vs low-grade DG samples. 2-Hydroxyglutarate (2HG) was a metabolite of interest to predict IDH mutational status and aminoadipic acid (AAA) and guanidinoacetic acid (GAA) were significantly associated with grade. The diagnostic performances of the models were 82.6% AUC, 70.6% sensitivity and 80.4% specificity for 2HG to predict IDH status and 84.7% AUC, 78.1% sensitivity and 73.4% specificity for AAA and GAA to predict grade from FFPE samples. Thus, this study showed that AAA and GAA are two novel metabolites of interest in DG and that metabolomic data can be useful in the classification of DG, both in frozen and FFPE samples.


Brain Neoplasms , Glioma , Humans , Adult , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/chemistry , Formaldehyde , Paraffin , Paraffin Embedding/methods , Isocitrate Dehydrogenase/genetics , Glioma/diagnosis , Glioma/genetics , Mutation
6.
Front Pharmacol ; 14: 1205062, 2023.
Article En | MEDLINE | ID: mdl-37693903

Background: The inflammatory factor YKL-40 is associated with various inflammatory diseases and is key to remodeling inflammatory cells and tissues. YKL-40 (Chi3l1) promotes the activation of tissue factor (TF), leading to intrahepatic vascular coagulation (IAOC) and liver injury. TF is a key promoter of the exogenous coagulation cascade and is also involved in several signaling involving cell proliferation, apoptosis, charring, migration and inflammatory diseases pathways. However, the effect of YKL-40-induced TF-PAR1 pathway on the expression of downstream chemokines remains unknown. Methods: We established a liver injury model using Concanavalin A (ConA) in C57 BL/6 mice. By adopting various experimental techniques, the effect of YKL-40 induced TF-PAR1 pathway on the expression of downstream chemokine ligand 2 (CCL2) and IP-10 was verified. Results: We found that overexpression of YKL-40 increased the expression of TF, protease-activated receptor 1 (PAR1), CCL2 and IP-10 in mice and exacerbated the severity of liver injury. However, blocking the expression of TF significantly reversed the extent of liver injury. Conclusion: We found that YKL-40 promotes the expression of downstream chemokines ligand 2 (CCL2) and IP-10 by activating the TF-PAR1 pathway, leading to increased recruitment of inflammatory cells and exacerbating the progression of liver injury. This provides a new approach for the clinical treatment of drug-induced liver injury.

7.
Int Immunopharmacol ; 124(Pt B): 110981, 2023 Nov.
Article En | MEDLINE | ID: mdl-37769534

The Immunoscore (ISc) is an emerging immune-based scoring system that has shown potential in improving the prognostic and therapeutic management of patients with solid tumors. The ISc evaluates the immune infiltrate within the tumor microenvironment (TME) and has demonstrated superior predictive ability compared to traditional histopathological parameters. It has been particularly promising in colorectal, lung, breast, and melanoma cancers. This review summarizes the clinical evidence supporting the prognostic value of the ISc and explores its potential in guiding therapeutic decisions, such as the selection of adjuvant therapies and recognizing patients likely to profit from immune checkpoint inhibitors (ICIs). The challenges and future directions of ISc implementation are also discussed, including standardization and integration into routine clinical practice.


Melanoma , Humans , Prognosis , Melanoma/diagnosis , Melanoma/therapy , Immune Checkpoint Inhibitors , Tumor Microenvironment
8.
Metabolites ; 13(7)2023 Jun 23.
Article En | MEDLINE | ID: mdl-37512489

Although it is the gold standard for assessing the malignancy of thyroid nodules (TNs) preoperatively, the cytological analysis of fine-needle aspiration cytology (FNAC) samples results in 20-30% of cases in indeterminate lesions (ITNs). As two-thirds of these lesions will appear benign after diagnostic surgery, improved preoperative diagnostic methods need to be developed. In this pilot study, we evaluate if the metabolomic profiles of liquid-based (CytoRich®) FNAC samples of benign and malignant nodules can allow the molecular diagnosis of TNs. We performed untargeted metabolomic analyses with CytoRich® FNAC in a monocentric retrospective study. The cohort was composed of cytologically benign TNs, histologically benign or papillary thyroid carcinomas (PTCs) cytologically ITNs, and suspicious/malignant TNs histologically confirmed as PTCs. The diagnostic performance of the identified metabolomic signature was assessed using several supervised classification methods. Seventy-eight patients were enrolled in the study. We identified 7690 peaks, of which 2697 ions were included for further analysis. We selected a metabolomic signature composed of the top 15 metabolites. Among all the supervised classification methods, the supervised autoencoder deep neural network exhibited the best performance, with an accuracy of 0.957 (0.842-1), an AUC of 0.945 (0.833-1), and an F1 score of 0.947 (0.842-1). Here, we report a promising new ancillary molecular technique to differentiate PTCs from benign TNs (including among ITNs) based on the metabolomic signature of FNAC sample fluids. Further studies with larger cohorts are now needed to identify a larger number of biomarkers and obtain more robust signatures.

9.
BMC Neurol ; 23(1): 113, 2023 Mar 20.
Article En | MEDLINE | ID: mdl-36941577

BACKGROUND: Recently, the BAOCHE trial and ATTENTION trial registry have demonstrated the efficacy of endovascular treatment (EVT) in patients with acute basilar artery occlusion (BAO), however, the proportion of patients with favorable post-EVT outcomes remains low. The present study aimed to investigate the individual and joint prognostic values of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in patients with acute BAO who have undergone EVT. METHODS: We enrolled patients who underwent EVT from the BASILAR registry. Patients were divided into the following groups based on their modified Rankin Scale (mRS) scores at 90 days: favorable-outcome (mRS score: 0-3) and poor-outcome (mRS score: 4-6) groups. Multivariable logistic regression was performed to analyze the association of NLR and PLR with favorable post-EVT outcomes. RESULTS: In total, 585 patients with EVT were recruited. Of these, 189 and 396 patients were in the favorable-outcome and poor-outcome groups, respectively. According to the multivariable logistic regression analyses, both NLR (adjusted odds ratio [aOR], 0.950; 95% confidence interval [CI], 0.920-0.981; P = 0.002) and PLR (aOR, 0.997; 95% CI, 0.995-0.999; P = 0.002) were related to favorable post-EVT outcomes in patients with acute BAO. The optimal cutoff values for the NLR and PLR were 7.75 and 191, respectively. Furthermore, stratified analysis using the multivariable logistic regression model revealed that both NLR and PLR (NLR values ≥ 7.75 and PLR values ≥ 191) were associated with a low rate of favorable outcomes (aOR, 0.292; 95% CI, 0.173-0.494; P < 0.001). CONCLUSIONS: Low NLR and PLR were both associated with favorable post-EVT outcomes in patients with acute BAO. Furthermore, the combined value of both inflammatory markers is potentially reliable in predicting clinical post-EVT outcomes.


Arterial Occlusive Diseases , Endovascular Procedures , Humans , Neutrophils , Basilar Artery , Lymphocytes , Blood Platelets , Treatment Outcome , Arterial Occlusive Diseases/therapy , Registries , Endovascular Procedures/adverse effects
10.
Asian J Psychiatr ; 82: 103513, 2023 Apr.
Article En | MEDLINE | ID: mdl-36827938

Our study aimed to examine the shared and distinct structural brain alterations, including cortical thickness(CT) and local gyrification index(LGI), and cognitive impairments between the early course stage of drug-naïve schizophrenia(SZ) and bipolar disorder(BD) patients when compared to healthy controls(HCs), and to further explore the correlation between altered brain structure and cognitive impairments. We included 72 SZ patients, 35 BD patients and 43 HCs. The cognitive function was assessed using the MATRICS Consensus Cognitive Battery. Cerebral cortex analyses were performed with FreeSurfer. Furthermore, any structural aberrations related to cognition impairments were examined. Cognitive impairments existed in SZ and BD patients and were much more severe and widespread in SZ patients, compared to HCs. There were no significant differences in LGI among three groups. Compared to HCs, SZ had thicker cortex in left pars triangularis, and BD showed thinner CT in left postcentral gyrus. In addition, BD showed thinner cortex in left pars triangularis, left pars opercularis, left insula and right fusiform gyrus compared to SZ. Moreover, our results indicated that CT in many brain areas were significantly correlated with cognitive function in HCs, but only CT of left pars triangularis was correlated with impaired social cognition found in SZ. The findings suggest that changes of CT in the left pars triangularis and left postcentral gyrus may be potential pathophysiological mechanisms of the cognition impairments in SZ and BD, respectively, and the divergent CT of partly brain areas in BD vs. SZ may help distinguish them in early phases.


Bipolar Disorder , Brain Cortical Thickness , Brain , Cognition Disorders , Cognition , Schizophrenia , Schizophrenic Psychology , Schizophrenia/complications , Schizophrenia/pathology , Schizophrenia/physiopathology , Bipolar Disorder/complications , Bipolar Disorder/pathology , Bipolar Disorder/physiopathology , Bipolar Disorder/psychology , Brain/pathology , Brain/physiopathology , Cognition Disorders/complications , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Cerebral Cortical Thinning , Humans , Male , Female , Young Adult , Case-Control Studies , Correlation of Data
11.
Biomed Pharmacother ; 158: 114138, 2023 Feb.
Article En | MEDLINE | ID: mdl-36535199

Age-related macular degeneration (AMD) is the leading cause of low vision and blindness for which there is currently no cure. Increased matrix metalloproteinase-9 (MMP-9) was found in AMD and potently contributes to its pathogenesis. Resident microglia also promote the processes of chronic neuroinflammation, accelerating the progression of AMD. The present study investigates the effects and mechanisms of the natural compound theissenolactone B (LB53), isolated from Theissenia cinerea, on the effects of RPE dysregulation and microglia hyperactivation and its retinal protective ability in a sodium iodate (NaIO3)-induced retinal degeneration model of AMD. The fungal component LB53 significantly reduces MMP-9 gelatinolysis in TNF-α-stimulated human RPE cells (ARPE-19). Similarly, LB53 abolishes MMP-9 protein and mRNA expression in ARPE-19 cells. Moreover, LB53 efficiently suppresses nitric oxide (NO) production, iNOS expression, and intracellular ROS levels in LPS-stimulated TLR 4-activated microglial BV-2 cells. According to signaling studies, LB53 specifically targets canonical NF-κB signaling in both ARPE-19 and BV-2 microglia. In an RPE-BV-2 interaction assay, LB53 ameliorates LPS-activated BV-2 conditioned medium-induced MMP-9 activation and expression in the RPE. In NaIO3-induced AMD mouse model, LB53 restores photoreceptor and bipolar cell dysfunction as assessed by electroretinography (ERG). Additionally, LB53 prevents retinal thinning, primarily the photoreceptor, and reduces retinal blood flow from NaIO3 damage evaluated by optic coherence tomography (OCT) and laser speckle flowgraphy (LSFG), respectively. Our results demonstrate that LB53 exerts neuroprotection in a mouse model of AMD, which can be attributed to its anti-retinal inflammatory effects by impeding RPE-mediated MMP-9 activation and anti-microglia.


Macular Degeneration , Retinal Degeneration , Mice , Animals , Humans , Matrix Metalloproteinase 9/metabolism , Microglia/metabolism , Retinal Pigment Epithelium , Retinal Pigments/adverse effects , Retinal Pigments/metabolism , Lipopolysaccharides/pharmacology , Macular Degeneration/chemically induced , Macular Degeneration/drug therapy , Retinal Degeneration/metabolism , Disease Models, Animal
12.
Ther Adv Drug Saf ; 13: 20420986221143266, 2022.
Article En | MEDLINE | ID: mdl-36545565

Background: Triazole antifungals are widely used as broad-spectrum antifungal activity; however, there are many undetected and unreported adverse events (AEs). Methods: Data from the Food and Drug Administration Adverse Event Reporting System (FAERS) from the first quarter (Q1) of 2004 to the third quarter (Q3) of 2021 were selected for disproportionality analysis to assess the connection between antifungal triazoles, and AEs and important medical events (IMEs). Results: A total of 22,566 records associated with triazole antifungals were identified, with 9584 triazole antifungal-IME pairs. The following system organ classes (SOCs) appeared as significant signals: 'Endocrine disorders' [reported odds ratio (ROR) = 167.94], 'Metabolism and nutrition disorders' (ROR = 46.30), and 'Skin and subcutaneous tissue disorders' (ROR = 21.37). Strong signals were observed with respiratory failure, rash, hepatic function abnormal, and hypokalemia. Uncommon security signals included a change in the QT interval, neurotoxicity, pseudoaldosteronism, and hallucinations. Conclusion: Various triazole antifungals cause AEs of different types and intensities of association. Our results are broadly consistent with prescribing information and previous studies; however, additional pharmacoepidemiological studies are required to verify AEs with modest incidence but high signal. Plain Language Summary: A study on the adverse effects of triazole antifungals Introduction: The triazole antifungals we studied include fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole. Triazole antifungals are widely used as broad-spectrum antifungals; however, there are many undetected and unreported adverse events (AEs).Materials and Methods: The Food and Drug Administration Adverse Event Reporting System (FAERS) database contains AEs reported to the FDA by different countries regarding post-marketing drugs. Through the FAERS database, we retrieved a total of 22,566 AE reports related to triazole antifungals. We not only counted information about patients' gender, age, weight, reporting country, outcome indicators, and indications but also analyzed the system organ classes (SOCs) of AEs, and the number of reported drug-related AEs and the degree of relevance.Results: We found a total of 22,566 records related to triazole antifungal agents, of which 9584 reports made important medical events (IMEs) about triazole antifungal agents, which are serious AEs. The following SOCs appear as important signals: 'endocrine disorders', 'metabolic and nutritional disorders', and 'skin and subcutaneous tissue disorders'. Triazole antifungals produce AEs, such as respiratory failure, rash, hepatic function abnormal, and hypokalemia. They also produce uncommon AEs, including changes in the QT interval, neurotoxicity, pseudoaldosteronism, and hallucinations.Conclusion: By analyzing data from the FAERS database, we identified more AEs associated with these five triazole antifungals than were indicated in the instructions and our findings provide additional insight into triazole-related AEs to inform clinicians before and during treatment.

13.
Cells ; 11(16)2022 08 21.
Article En | MEDLINE | ID: mdl-36010682

The root extracellular trap (RET) has emerged as a specialized compartment consisting of root AC-DC and mucilage. However, the RET's contribution to plant defense is still poorly understood. While the roles of polysaccharides and glycoproteins secreted by root AC-DC have started to be elucidated, how the low-molecular-weight exudates of the RET contribute to root defense is poorly known. In order to better understand the RET and its defense response, the transcriptomes, proteomes and metabolomes of roots, root AC-DC and mucilage of soybean (Glycine max (L.) Merr, var. Castetis) upon elicitation with the peptide PEP-13 were investigated. This peptide is derived from the pathogenic oomycete Phytophthora sojae. In this study, the root and the RET responses to elicitation were dissected and sequenced using transcriptional, proteomic and metabolomic approaches. The major finding is increased synthesis and secretion of specialized metabolites upon induced defense activation following PEP-13 peptide elicitation. This study provides novel findings related to the pivotal role of the root extracellular trap in root defense.


Phytophthora , Plant Diseases , Plant Roots/metabolism , Proteomics , Glycine max/metabolism
14.
Plant Direct ; 6(8): e402, 2022 Aug.
Article En | MEDLINE | ID: mdl-35949952

One of the main limiting factors of plant yield is drought, and while the physiological responses to this environmental stress have been broadly described, research addressing its impact on mineral nutrition is scarce. Brassica napus and Triticum aestivum were subjected to moderate or severe water deficit, and their responses to drought were assessed by functional ionomic analysis, and derived calculation of the net uptake of 20 nutrients. While the uptake of most mineral nutrients decreased, Fe, Zn, Mn, and Mo uptake were impacted earlier and at a larger scale than most physiological parameters assessed (growth, ABA concentration, gas exchanges and photosynthetic activity). Additionally, in B. napus, the patterns of 183 differentially expressed genes in leaves related to the ionome (known ionomic genes, KIGs) or assumed to be involved in transport of a given nutrient were analyzed. This revealed three patterns of gene expression under drought consisting of up (transport of Cl and Co), down (transport of N, P, B, Mo, and Ni), or mixed levels (transport of S, Mg, K, Zn, Fe, Cu, or Mn) of regulation. The three patterns of gene regulations are discussed in relation to specific gene functions, changes of leaf ionomic composition and with consideration of the crosstalks that have been established between elements. It is suggested that the observed reduction in Fe uptake occurred via a specific response to drought, leading indirectly to reduced uptake of Zn and Mn, and these may be taken up by common transporters encoded by genes that were downregulated.

15.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article En | MEDLINE | ID: mdl-35054964

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.


Brassica napus/physiology , Droughts , Metabolome , Minerals/metabolism , Plant Leaves/physiology , Plant Physiological Phenomena , Transcriptome , Computational Biology/methods , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Models, Biological , Stress, Physiological/genetics
16.
Brief Bioinform ; 23(1)2022 01 17.
Article En | MEDLINE | ID: mdl-34849567

MOTIVATION: Understanding chemical-gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. RESULTS: We developed BioNet, a deep biological networkmodel with a graph encoder-decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.


Computational Biology , Computer Simulation , Models, Biological , Neural Networks, Computer
17.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article En | MEDLINE | ID: mdl-34769110

The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of Brassica napus roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations. Significantly, comparative transcriptomic analysis allowed the definition of a subset of 3282, 2011, 6325, 1384, 439, and 5157 differentially expressed genes (DEGs) specific to N, Mg, P, S, K, and Ca deprivations, respectively. Surprisingly, gene ontology term enrichment analysis performed on this subset of specific DEGs highlighted biological processes that are common to a number of these macronutrient deprivations, illustrating the complexity of nutrient interactions. In addition, a set of 38 biochemical compounds that discriminated the macronutrient deprivations was identified using a metabolic approach. The opportunity to use these specific DEGs and/or biochemical compounds as potential molecular indicators to diagnose macronutrient deficiency is discussed.


Brassica napus/metabolism , Metabolome , Nutrients/deficiency , Plant Roots/metabolism , Stress, Physiological , Nutritive Value , Proteomics
18.
Front Plant Sci ; 12: 681895, 2021.
Article En | MEDLINE | ID: mdl-34484256

Potassium (K) plays a crucial role in plant growth and development and is involved in different physiological and biochemical functions in plants. Brassica napus needs higher amount of nutrients like nitrogen (N), K, phosphorus (P), sulfur (S), and boron (B) than cereal crops. Previous studies in B. napus are mainly focused on the role of N and S or combined deficiencies. Hence, little is known about the response of B. napus to K deficiency. Here, a physiological, biochemical, and molecular analysis led us to investigate the response of hydroponically grown B. napus plants to K deficiency. The results showed that B. napus was highly sensitive to the lack of K. The lower uptake and translocation of K induced BnaHAK5 expression and significantly declined the growth of B. napus after 14 days of K starvation. The lower availability of K was associated with a decrease in the concentration of both S and N and modulated the genes involved in their uptake and transport. In addition, the lack of K induced an increase in Ca2+ and Mg2+ concentration which led partially to the accumulation of positive charge. Moreover, a decrease in the level of arginine as a positively charged amino acid was observed which was correlated with a substantial increase in the polyamine, putrescine (Put). Furthermore, K deficiency induced the expression of BnaNCED3 as a key gene in abscisic acid (ABA) biosynthetic pathway which was associated with an increase in the levels of ABA. Our findings provided a better understanding of the response of B. napus to K starvation and will be useful for considering the importance of K nutrition in this crop.

19.
Physiol Plant ; 173(3): 935-953, 2021 Nov.
Article En | MEDLINE | ID: mdl-34245168

The simultaneous presence of different N-forms in the rhizosphere leads to beneficial effects on nitrogen (N) nutrition in plants. Although widely used as fertilizers, the occurrence of cross connection between urea and ammonium nutrition has been scarcely studied in plants. Maize fed with a mixture of urea and ammonium displayed a better N-uptake efficiency than ammonium- or urea-fed plants (Buoso et al., Plant Physiol Biochem, 2021a; 162: 613-623). Through multiomic approaches, we provide the molecular characterization of maize response to urea and ammonium nutrition. Several transporters and enzymes involved in N-nutrition were upregulated by all three N-treatments (urea, ammonium, or urea and ammonium). Already after 1 day of treatment, the availability of different N-forms induced specific transcriptomic and metabolomic responses. The combination of urea and ammonium induced a prompt assimilation of N, characterized by high levels of some amino acids in shoots. Moreover, ZmAMT1.1a, ZmGLN1;2, ZmGLN1;5, ZmGOT1, and ZmGOT3, as well transcripts involved in glycolysis-TCA cycle were induced in roots by urea and ammonium mixture. Depending on N-form, even changes in the composition of phytohormones were observed in maize. This study paves the way to formulate guidelines for the optimization of N fertilization to improve N-use efficiency in maize and therefore limit N-losses in the environment.


Ammonium Compounds , Zea mays , Ammonium Compounds/metabolism , Fertilizers , Gene Expression Regulation, Plant , Nitrogen/metabolism , Plant Roots/metabolism , Transcriptome , Urea , Zea mays/genetics , Zea mays/metabolism
20.
Molecules ; 26(10)2021 May 17.
Article En | MEDLINE | ID: mdl-34067678

Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3ß-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.


Brain Injuries/drug therapy , Ergosterol/analogs & derivatives , Ergosterol/pharmacology , Animals , Brain/metabolism , Brain Injuries/metabolism , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Cyclooxygenase 2/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Macrophage Activation/drug effects , Macrophages/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Microglia/drug effects , Polyporales/metabolism , Signal Transduction/drug effects
...