Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 10(3): 1000-1022, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38367280

ABSTRACT

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Subject(s)
Antimalarials , Malaria, Falciparum , Thiazoles , Humans , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Chloroquine , Antimalarials/pharmacology , Antimalarials/chemistry
2.
ChemMedChem ; 18(19): e202300346, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37718320

ABSTRACT

Discovery of novel antibiotics needs multidisciplinary approaches to gain target enzyme and bacterial activities while aiming for selectivity over mammalian cells. Here, we report a multiparameter optimisation of a fragment-like hit that was identified through a structure-based virtual-screening campaign on Escherichia coli IspE crystal structure. Subsequent medicinal-chemistry design resulted in a novel class of E. coli IspE inhibitors, exhibiting activity also against the more pathogenic bacteria Pseudomonas aeruginosa and Acinetobacter baumannii. While cytotoxicity remains a challenge for the series, it provides new insights on the molecular properties for balancing enzymatic target and bacterial activities simultaneously as well as new starting points for the development of IspE inhibitors with a predicted new mode of action.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Mammals
3.
ChemMedChem ; 18(11): e202200590, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36896721

ABSTRACT

In this work, we demonstrate how important it is to investigate not only on-target activity but to keep antibiotic activity against critical pathogens in mind. Since antimicrobial resistance is spreading in bacteria such as Mycobacterium tuberculosis, investigations into new targets are urgently needed. One promising new target is 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. We have recently solved the crystal structure of truncated M. tuberculosis DXPS and used it to perform a virtual screening in collaboration with Atomwise Inc. using their deep convolutional neural network-based AtomNet® platform. Of 94 virtual hit compounds only one showed interesting results in binding and activity studies. We synthesized 30 close derivatives using a straightforward synthetic route that allowed for easy derivatization. However, no improvement in activity was observed for any of the derivatives. Therefore, we tested them against a variety of pathogens and found them to be good inhibitors against Escherichia coli.


Subject(s)
Aldose-Ketose Isomerases , Mycobacterium tuberculosis , Sugar Phosphates , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Nitric Oxide Synthase/metabolism , Escherichia coli/metabolism , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/metabolism
4.
Chem Sci ; 13(36): 10686-10698, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36320685

ABSTRACT

In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action.

5.
Chem Sci ; 12(22): 7775-7785, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34168831

ABSTRACT

Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biological targets.

6.
Angew Chem Int Ed Engl ; 56(47): 15136-15140, 2017 11 20.
Article in English | MEDLINE | ID: mdl-29024307

ABSTRACT

We report herein the use of a dual catalytic system comprising a Lewis base catalyst such as quinuclidin-3-ol or 4-dimethylaminopyridine and a photoredox catalyst to generate carbon radicals from either boronic acids or esters. This system enabled a wide range of alkyl boronic esters and aryl or alkyl boronic acids to react with electron-deficient olefins via radical addition to efficiently form C-C coupled products in a redox-neutral fashion. The Lewis base catalyst was shown to form a redox-active complex with either the boronic esters or the trimeric form of the boronic acids (boroxines) in solution.

SELECTION OF CITATIONS
SEARCH DETAIL