Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Bioanalysis ; 16(9): 307-364, 2024.
Article in English | MEDLINE | ID: mdl-38913185

ABSTRACT

The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.


Subject(s)
Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Biomarkers/analysis , United States , Cell- and Tissue-Based Therapy , Genetic Therapy , Chromatography/methods , White
2.
J Med Internet Res ; 26: e47560, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885013

ABSTRACT

BACKGROUND: With an overarching goal of increasing diversity and inclusion in biomedical sciences, the National Research Mentoring Network (NRMN) developed a web-based national mentoring platform (MyNRMN) that seeks to connect mentors and mentees to support the persistence of underrepresented minorities in the biomedical sciences. As of May 15, 2024, the MyNRMN platform, which provides mentoring, networking, and professional development tools, has facilitated more than 12,100 unique mentoring connections between faculty, students, and researchers in the biomedical domain. OBJECTIVE: This study aimed to examine the large-scale mentoring connections facilitated by our web-based platform between students (mentees) and faculty (mentors) across institutional and geographic boundaries. Using an innovative graph database, we analyzed diverse mentoring connections between mentors and mentees across demographic characteristics in the biomedical sciences. METHODS: Through the MyNRMN platform, we observed profile data and analyzed mentoring connections made between students and faculty across institutional boundaries by race, ethnicity, gender, institution type, and educational attainment between July 1, 2016, and May 31, 2021. RESULTS: In total, there were 15,024 connections with 2222 mentees and 1652 mentors across 1625 institutions contributing data. Female mentees participated in the highest number of connections (3996/6108, 65%), whereas female mentors participated in 58% (5206/8916) of the connections. Black mentees made up 38% (2297/6108) of the connections, whereas White mentors participated in 56% (5036/8916) of the connections. Mentees were predominately from institutions classified as Research 1 (R1; doctoral universities-very high research activity) and historically Black colleges and universities (556/2222, 25% and 307/2222, 14%, respectively), whereas 31% (504/1652) of mentors were from R1 institutions. CONCLUSIONS: To date, the utility of mentoring connections across institutions throughout the United States and how mentors and mentees are connected is unknown. This study examined these connections and the diversity of these connections using an extensive web-based mentoring network.


Subject(s)
Mentoring , Mentors , Humans , Mentoring/methods , Mentors/statistics & numerical data , Female , Male , Biomedical Research/statistics & numerical data , United States , Minority Groups/statistics & numerical data , Databases, Factual , Faculty/statistics & numerical data
3.
Genet Sel Evol ; 56(1): 44, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858613

ABSTRACT

BACKGROUND: Longitudinal records of automatically-recorded vaginal temperature (TV) could be a key source of data for deriving novel indicators of climatic resilience (CR) for breeding more resilient pigs, especially during lactation when sows are at an increased risk of suffering from heat stress (HS). Therefore, we derived 15 CR indicators based on the variability in TV in lactating sows and estimated their genetic parameters. We also investigated their genetic relationship with sows' key reproductive traits. RESULTS: The heritability estimates of the CR traits ranged from 0.000 ± 0.000 for slope for decreased rate of TV (SlopeDe) to 0.291 ± 0.047 for sum of TV values below the HS threshold (HSUB). Moderate to high genetic correlations (from 0.508 ± 0.056 to 0.998 ± 0.137) and Spearman rank correlations (from 0.431 to 1.000) between genomic estimated breeding values (GEBV) were observed for five CR indicators, i.e. HS duration (HSD), the normalized median multiplied by normalized variance (Nor_medvar), the highest TV value of each measurement day for each individual (MaxTv), and the sum of the TV values above (HSUA) and below (HSUB) the HS threshold. These five CR indicators were lowly to moderately genetically correlated with shoulder skin surface temperature (from 0.139 ± 0.008 to 0.478 ± 0.048) and respiration rate (from 0.079 ± 0.011 to 0.502 ± 0.098). The genetic correlations between these five selected CR indicators and sow reproductive performance traits ranged from - 0.733 to - 0.175 for total number of piglets born alive, from - 0.733 to - 0.175 for total number of piglets born, and from - 0.434 to - 0.169 for number of pigs weaned. The individuals with the highest GEBV (most climate-sensitive) had higher mean skin surface temperature, respiration rate (RR), panting score (PS), and hair density, but had lower mean body condition scores compared to those with the lowest GEBV (most climate-resilient). CONCLUSIONS: Most of the CR indicators evaluated are heritable with substantial additive genetic variance. Five of them, i.e. HSD, MaxTv, HSUA, HSUB, and Nor_medvar share similar underlying genetic mechanisms. In addition, individuals with higher CR indicators are more likely to exhibit better HS-related physiological responses, higher body condition scores, and improved reproductive performance under hot conditions. These findings highlight the potential benefits of genetically selecting more heat-tolerant individuals based on CR indicators.


Subject(s)
Heat-Shock Response , Lactation , Animals , Female , Lactation/genetics , Swine/genetics , Swine/physiology , Heat-Shock Response/genetics , Vagina , Body Temperature , Climate , Breeding/methods , Quantitative Trait, Heritable
4.
BMC Genomics ; 25(1): 467, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741036

ABSTRACT

BACKGROUND: Heat stress (HS) poses significant threats to the sustainability of livestock production. Genetically improving heat tolerance could enhance animal welfare and minimize production losses during HS events. Measuring phenotypic indicators of HS response and understanding their genetic background are crucial steps to optimize breeding schemes for improved climatic resilience. The identification of genomic regions and candidate genes influencing the traits of interest, including variants with pleiotropic effects, enables the refinement of genotyping panels used to perform genomic prediction of breeding values and contributes to unraveling the biological mechanisms influencing heat stress response. Therefore, the main objectives of this study were to identify genomic regions, candidate genes, and potential pleiotropic variants significantly associated with indicators of HS response in lactating sows using imputed whole-genome sequence (WGS) data. Phenotypic records for 18 traits and genomic information from 1,645 lactating sows were available for the study. The genotypes from the PorcineSNP50K panel containing 50,703 single nucleotide polymorphisms (SNPs) were imputed to WGS and after quality control, 1,622 animals and 7,065,922 SNPs were included in the analyses. RESULTS: A total of 1,388 unique SNPs located on sixteen chromosomes were found to be associated with 11 traits. Twenty gene ontology terms and 11 biological pathways were shown to be associated with variability in ear skin temperature, shoulder skin temperature, rump skin temperature, tail skin temperature, respiration rate, panting score, vaginal temperature automatically measured every 10 min, vaginal temperature measured at 0800 h, hair density score, body condition score, and ear area. Seven, five, six, two, seven, 15, and 14 genes with potential pleiotropic effects were identified for indicators of skin temperature, vaginal temperature, animal temperature, respiration rate, thermoregulatory traits, anatomical traits, and all traits, respectively. CONCLUSIONS: Physiological and anatomical indicators of HS response in lactating sows are heritable but highly polygenic. The candidate genes found are associated with important gene ontology terms and biological pathways related to heat shock protein activities, immune response, and cellular oxidative stress. Many of the candidate genes with pleiotropic effects are involved in catalytic activities to reduce cell damage from oxidative stress and cellular mechanisms related to immune response.


Subject(s)
Heat-Shock Response , Lactation , Polymorphism, Single Nucleotide , Animals , Female , Heat-Shock Response/genetics , Lactation/genetics , Swine/genetics , Phenotype , Quantitative Trait Loci , Genotype , Genomics
6.
Aging Biol ; 22024.
Article in English | MEDLINE | ID: mdl-38550776

ABSTRACT

Continuous methionine restriction (MR) is one of only a few dietary interventions known to dramatically extend mammalian healthspan. For example, continuously methionine-restricted rodents show less age-related pathology and are up to 45% longer-lived than controls. Intriguingly, MR is feasible for humans, andanumberofstudieshavesuggestedthatmethionine-restrictedindividualsmayreceivesimilarhealthspan benefits as rodents. However, long-term adherence to a continuously methionine-restricted diet is likely to be challenging (or even undesirable) for many individuals. To address this, we previously developed an intermittent version of MR (IMR) and demonstrated that it confers nearly identical metabolic health benefits to mice as the continuous intervention, despite having a relatively short interventional period (i.e., only three days per week). We also observed that female mice undergoing IMR show a more pronounced amelioration of diet-induced dysglycemia than continuously methionine-restricted counterparts, while male mice undergoing IMR retain more lean body mass as compared with continuously methionine-restricted controls. Prompted by such findings, we sought to determine other ways in which IMR might compare favorably with continuous MR. While it is known that continuous MR has deleterious effects on bone in mice, including loss of both trabecular and cortical bone, we considered that mice undergoing IMR might retain more bone mass. Here, we report that, as compared with continuous MR, IMR results in a preservation of both trabecular and cortical bone, as well as a dramatic reduction in the accumulation of marrow fat. Consistent with such findings, mechanical testing revealed that the bones of intermittently methionine-restricted mice are significantly stronger than those of mice subjected to the continuous intervention. Finally, static histomorphometric analyses suggest that IMR likely results in more bone mass than that produced by continuous MR, primarily by increasing the number of osteoblasts. Together, our results demonstrate that the more practicable intermittent form of MR not only confers similar metabolic health benefits to the continuous intervention but does so without markedly deleterious effects on either the amount or strength of bone. These data provide further support for the use of IMR in humans.

7.
Bioinformation ; 20(1): 4-10, 2024.
Article in English | MEDLINE | ID: mdl-38352912

ABSTRACT

Many age-progressive diseases are accompanied by (and likely caused by) the presence of protein aggregation in affected tissues. Protein aggregates are conjoined by complex protein-protein interactions, which remain poorly understood. Knowledge of the proteins that comprise aggregates, and their adherent interfaces, can be useful to identify therapeutic targets to treat or prevent pathology, and to discover small molecules for disease interventions. We present web-based software to evaluate and rank influential proteins and protein-protein interactions based on graph modelling of the cross linked aggregate interactome. We have used two network-graph-based techniques: Leave-One-Vertex-Out (LOVO) and Leave-One-Edge-Out (LOEO), each followed by dimension reduction and calculation of influential vertices and edges using Principal Components Analysis (PCA) implemented as an R program. This method enables researchers to quickly and accurately determine influential proteins and protein-protein interactions present in their aggregate interactome data.

8.
J Anim Breed Genet ; 141(3): 257-277, 2024 May.
Article in English | MEDLINE | ID: mdl-38009390

ABSTRACT

Genetic improvement of livestock productivity has resulted in greater production of metabolic heat and potentially greater susceptibility to heat stress. Various studies have demonstrated that there is genetic variability for heat tolerance and genetic selection for more heat tolerant individuals is possible. The rate of genetic progress tends to be greater when genomic information is incorporated into the analyses as more accurate breeding values can be obtained for young individuals. Therefore, this study aimed (1) to evaluate the predictive ability of genomic breeding values for heat tolerance based on routinely recorded traits, and (2) to investigate the genetic background of heat tolerance based on single-step genome-wide association studies for economically important traits related to body composition, growth and reproduction in Large White pigs. Pedigree information was available for 265,943 animals and genotypes for 8686 animals. The studied traits included ultrasound backfat thickness (BFT), ultrasound muscle depth (MDP), piglet weaning weight (WW), off-test weight (OTW), interval between farrowing (IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets born dead (NBD), number of piglets weaned (WN) and weaning-to-estrus interval (IWE). The number of phenotypic records ranged from 6059 (WN) to 172,984 (TNB). Single-step genomic reaction norm predictions were used to calculate the genomic estimated breeding values for each individual. Predictions of breeding values for the validation population individuals were compared between datasets containing phenotypic records measured in the whole range of temperatures (WR) and datasets containing only phenotypic records measured when the weather station temperature was above 10°C (10C) or 15°C (15C), to evaluate the usefulness of these datasets that may better reflect the within-barn temperature. The use of homogeneous or heterogeneous residual variance was found to be trait-dependent, where homogeneous variance presented the best fit for MDP, BFT, OTW, TNB, NBA, WN and IBF, while the other traits (WW and IWE) had better fit with heterogeneous variance. The average prediction accuracy, dispersion and bias values considering all traits for WR were 0.36 ± 0.05, -0.07 ± 0.13 and 0.76 ± 0.10, respectively; for 10C were 0.39 ± 0.02, -0.05 ± 0.07 and 0.81 ± 0.05, respectively; and for 15C were 0.32 ± 0.05, -0.05 ± 0.11 and 0.84 ± 0.10, respectively. Based on the studied traits, using phenotypic records collected when the outside temperature (from public weather stations) was above 10°C provided better predictions for most of the traits. Forty-three and 62 candidate genomic regions were associated with the intercept (overall performance level) and slope term (specific biological mechanisms related to environmental sensitivity), respectively. Our results contribute to improve genomic predictions using existing datasets and better understand the genetic background of heat tolerance in pigs. Furthermore, the genomic regions and candidate genes identified will contribute to future genomic studies and breeding applications.


Subject(s)
Genome-Wide Association Study , Thermotolerance , Humans , Female , Animals , Swine/genetics , Temperature , Genome-Wide Association Study/veterinary , Genotype , Genomics/methods , Phenotype , Weather
9.
BMC Genom Data ; 24(1): 76, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093199

ABSTRACT

BACKGROUND: Non-additive genetic effects are often ignored in livestock genetic evaluations. However, fitting them in the models could improve the accuracy of genomic breeding values. Furthermore, non-additive genetic effects contribute to heterosis, which could be optimized through mating designs. Traits related to fitness and adaptation, such as heat tolerance, tend to be more influenced by non-additive genetic effects. In this context, the primary objectives of this study were to estimate variance components and assess the predictive performance of genomic prediction of breeding values based on alternative models and two independent datasets, including performance records from a purebred pig population and heat tolerance indicators recorded in crossbred lactating sows. RESULTS: Including non-additive genetic effects when modelling performance traits in purebred pigs had no effect on the residual variance estimates for most of the traits, but lower additive genetic variances were observed, especially when additive-by-additive epistasis was included in the models. Furthermore, including non-additive genetic effects did not improve the prediction accuracy of genomic breeding values, but there was animal re-ranking across the models. For the heat tolerance indicators recorded in a crossbred population, most traits had small non-additive genetic variance with large standard error estimates. Nevertheless, panting score and hair density presented substantial additive-by-additive epistatic variance. Panting score had an epistatic variance estimate of 0.1379, which accounted for 82.22% of the total genetic variance. For hair density, the epistatic variance estimates ranged from 0.1745 to 0.1845, which represent 64.95-69.59% of the total genetic variance. CONCLUSIONS: Including non-additive genetic effects in the models did not improve the accuracy of genomic breeding values for performance traits in purebred pigs, but there was substantial re-ranking of selection candidates depending on the model fitted. Except for panting score and hair density, low non-additive genetic variance estimates were observed for heat tolerance indicators in crossbred pigs.


Subject(s)
Lactation , Thermotolerance , Swine/genetics , Animals , Female , Models, Genetic , Genomics , Alleles
10.
Genet Sel Evol ; 55(1): 95, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129768

ABSTRACT

BACKGROUND: Automatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV. RESULTS: Heritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, - 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ËšC). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370-59.998 Mb) and16 (21.548-21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production. CONCLUSIONS: TV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.


Subject(s)
Lactation , Thermotolerance , Swine , Animals , Female , Lactation/genetics , Temperature , Genome , Genomics
11.
Front Physiol ; 14: 1266409, 2023.
Article in English | MEDLINE | ID: mdl-37908333

ABSTRACT

The study objective was to evaluate the interaction between corticotrophin releasing factor (CRF) receptor signaling and prophylactic antibiotic administration on intestinal physiology in newly weaned and transported pigs. Pigs (n = 56; 5.70 ± 1.05 kg) were weaned (20.49 ± 0.64 d), a blood sample was taken, and then pigs were given an intraperitoneal injection of saline (SAL; n = 28 pigs) or a CRF receptor antagonist (CRFA; n = 28 pigs; 30 µg/kg body weight; Astressin B), and then were transported in a livestock trailer for 12 h and 49 min. A second and third intraperitoneal injection was given at 4 h 42 min and 11 h 36 min into the transport process, respectively. Following transport, 4 SAL and 4 CRFA pigs were blood sampled and euthanized. The remaining 48 pigs were individually housed and given dietary antibiotics [AB; n = 12 SAL and 12 CRFA pigs; chlortetracycline (441 ppm) + tiamulin (38.6 ppm)] or no dietary antibiotics (NAB; n = 12 SAL and 12 CRFA pigs) for 14 d post-transport. Blood was collected at 12 h and on d 3, 7, and 14, and then pigs were euthanized on d 7 (n = 24) and d 14 (n = 24) post-weaning and transport. Circulating cortisol was reduced (p = 0.05) in CRFA pigs when compared to SAL pigs post-weaning and transport. On d 7, jejunal villus height and crypt depth was greater overall (p < 0.05) in AB-fed pigs versus NAB-fed pigs. On d 14, ileal crypt depth was reduced (p = 0.02) in CRFA pigs when compared to SAL pigs. Jejunal CRF mRNA abundance tended to be reduced (p = 0.09) on d 7 in CRFA pigs versus SAL pigs. On d 14, jejunal tumor necrosis factor-alpha was reduced (p = 0.01) in AB-fed pigs versus NAB-fed pigs. On d 7, change in glucose short-circuit current tended to be increased (p = 0.07) in CRFA pigs fed the AB diet when compared to CRFA pigs fed the NAB diet. In conclusion, CRFA pigs and pigs fed AB had some similar biological intestinal function measures post-weaning and transport.

12.
Genet Sel Evol ; 55(1): 65, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730542

ABSTRACT

BACKGROUND: Genetic selection based on direct indicators of heat stress could capture additional mechanisms that are involved in heat stress response and enable more accurate selection for more heat-tolerant individuals. Therefore, the main objectives of this study were to estimate genetic parameters for various heat stress indicators in a commercial population of Landrace × Large White lactating sows measured under heat stress conditions. The main indicators evaluated were: skin surface temperatures (SST), automatically-recorded vaginal temperature (TV), respiration rate (RR), panting score (PS), body condition score (BCS), hair density (HD), body size (BS), ear size, and respiration efficiency (Reff). RESULTS: Traits based on TV presented moderate heritability estimates, ranging from 0.15 ± 0.02 to 0.29 ± 0.05. Low heritability estimates were found for SST traits (from 0.04 ± 0.01 to 0.06 ± 0.01), RR (0.06 ± 0.01), PS (0.05 0.01), and Reff (0.03 ± 0.01). Moderate to high heritability values were estimated for BCS (0.29 ± 0.04 for caliper measurements and 0.25 ± 0.04 for visual assessments), HD (0.25 ± 0.05), BS (0.33 ± 0.05), ear area (EA; 0.40 ± 0.09), and ear length (EL; 0.32 ± 0.07). High genetic correlations were estimated among SST traits (> 0.78) and among TV traits (> 0.75). Similarly, high genetic correlations were also estimated for RR with PS (0.87 ± 0.02), with BCS measures (0.92 ± 0.04), and with ear measures (0.95 ± 0.03). Low to moderate positive genetic correlations were estimated between SST and TV (from 0.25 ± 0.04 to 0.76 ± 0.07). Low genetic correlations were estimated between TV and BCS (from - 0.01 ± 0.08 to 0.06 ± 0.07). Respiration efficiency was estimated to be positively and moderately correlated with RR (0.36 ± 0.04), PS (0.56 ± 0.03), and BCS (0.56 ± 0.05 for caliper measurements and 0.50 ± 0.05 for the visual assessments). All other trait combinations were lowly genetically correlated. CONCLUSIONS: A comprehensive landscape of heritabilities and genetic correlations for various thermotolerance indicators in lactating sows were estimated. All traits evaluated are under genetic control and heritable, with different magnitudes, indicating that genetic progress is possible for all of them. The genetic correlation estimates provide evidence for the complex relationships between these traits and confirm the importance of a sub-index of thermotolerance traits to improve heat tolerance in pigs.


Subject(s)
Heat Stress Disorders , Thermotolerance , Humans , Animals , Female , Swine , Thermotolerance/genetics , Temperature , Lactation/genetics , Respiration , Heat-Shock Response/genetics
13.
J Dairy Sci ; 106(12): 9663-9676, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641349

ABSTRACT

l-Glutamine supplementation improves gastrointestinal and immune function in dairy calves during controlled immune and stress challenges. However, it is unknown whether supplementing milk replacer (MR) with l-glutamine improves preweaning dairy calf health and welfare under production conditions. Therefore, the study objective was to evaluate the effects of supplementing MR with l-glutamine on gastrointestinal permeability, immune function, growth performance, postabsorptive metabolic biomarkers, and physiological stress response in preweaning dairy calves. In 3 repetitions, Holstein heifer calves (n = 30; 1.5 ± 0.5 d old; 37.1 ± 0.86 kg body weight) were blocked by serum total protein, body weight, and age, and provided MR (3.8 L/calf per d; 24% CP, 17% fat, 12.5% solids) supplemented with l-glutamine (GLN; 10g/kg MR powder; n = 5 calves/repetition) or nonsupplemented (NSMR; n = 5 calves/repetition). Calves were individually housed with ad libitum starter grain and water access until weaning (56.4 ± 0.5 d old). At 1 and 6 wk of age, urinary catheters were placed, and calves were orally dosed with 1 L of chromium (Cr)-EDTA. Urine samples were collected over a 24-h period for Cr output analysis as an in vivo biomarker of gastrointestinal permeability. Blood was collected on study d 1, 5, 7, 14, 21, 42, and 56 to measure white blood cell counts, cortisol, insulin, glucose, nonesterified fatty acids, serum amyloid A, haptoglobin, and neutrophil: lymphocytes. Two study intervals were used in the statistical analyses, representing greater (P1; wk 1-3) and reduced (P2; wk 4-8) enteric disease susceptibility. Data were analyzed using PROC GLIMMIX in SAS 9.4 (SAS Institute Inc.) with calf as the experimental unit. Overall, total urinary Cr output was reduced in GLN versus NSMR calves. Total Cr output was reduced at 1 wk of age in GLN versus NSMR calves, but no differences were detected at 6 wk of age. Neutrophil:lymphocyte was decreased both overall and during P2 in GLN versus NSMR calves, and neutrophil counts tended to be reduced in GLN versus NSMR calves during P2. No MR treatment differences were detected for average daily feed intake, average daily gain, body measurements, postabsorptive metabolic biomarkers, disease scores, and therapeutic treatments between GLN and NSMR calves. In summary, l-glutamine supplementation reduced gastrointestinal permeability and biomarkers of physiological stress in preweaning Holstein heifer calves.


Subject(s)
Diet , Glutamine , Animals , Cattle , Female , Diet/veterinary , Glutamine/pharmacology , Weaning , Dietary Supplements , Body Weight/physiology , Milk/chemistry , Stress, Physiological , Animal Feed/analysis , Biomarkers , Edetic Acid/analysis
14.
Bioanalysis ; 15(16): 955-1016, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37650500

ABSTRACT

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.


Subject(s)
Chromatography , Vaccines , Biomarkers , Cell- and Tissue-Based Therapy , Mass Spectrometry , Oligonucleotides , Technology
15.
Transl Anim Sci ; 7(1): txad076, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37476419

ABSTRACT

Domesticated sows are motivated to perform nesting behavior prior to farrowing, and nesting material can reduce piglet cold stress. However, nesting material may not be practical in most production systems due to the potential for clogging slurry systems. Therefore, the study objectives were to assess an alternative nesting material provided prior to farrowing on sow welfare and piglet survival, and to investigate the effect of the entire nesting environment on piglet survival and growth performance. We hypothesized that the provision of jute nesting material would decrease sow stress and farrowing duration, and that nesting mat provision would allow piglets to remain euthermic and improve survival and growth. Sows (N = 20) were randomly assigned to one of two treatments: a farrowing crate with three pieces of 40.6 × 21.6 cm jute nesting material (Nest; n = 10) and two enriched piglet mats made from an acrylic board (28.0 × 86.4 cm) covered with a microfiber material, or a farrowing crate without nesting material (Control; n = 10) and one standard plastic piglet mat (28.0 × 86.4 cm). Jute pieces were attached to the front of the crate to prevent substrate from falling through the slatted floors. Saliva samples were collected to measure cortisol and immunoglobulin A (IgA), on days -1, 0, 1, and 2 relative to farrowing, and a final sample was collected at weaning (day 16.9 ±â€…0.18). Blood was collected from four piglets per litter to measure immunoglobulin G (IgG) at 48 h, day 7, and weaning. Piglet skin temperature (TS) was measured on two piglets per litter using an infrared camera for 3 d after birth at 0800, 1200, 1600, and 2000 h. One piglet was randomly chosen from the heat lamp and nonheat lamp side of the crate to measure TS. Video was continuously coded for observations of jute- and crate-directed interactions. Data were analyzed as a mixed model analysis of variance in SAS 9.4. Nest sows performed less crate-directed behavior than Control sows (P = 0.02). Cortisol tended to be reduced in Nest sows (P = 0.08) when compared to Controls, but no differences in IgA concentrations (P > 0.40) were detected. Nest piglets tended to be heavier on day 7 (P < 0.10), had greater IgG concentrations (P = 0.03), and had greater TS (P = 0.02) versus Controls. No farrowing duration or number of stillbirth differences were observed (P > 0.70). The jute material and piglet nests positively impacted sow welfare and piglet measures but did not translate into improved piglet survival.

16.
J Agric Food Chem ; 71(31): 11902-11920, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37490609

ABSTRACT

Heat stress (HS) negatively influences cows' welfare and productivity. Therefore, a better understanding of the physiological and molecular mechanisms of HS responses from multiple parities is paramount for the development of effective management and breeding strategies. In comparison with first-parity cows in the spring (Spring-1), first-parity cows in the summer (Summer-1) had a significantly higher rectal temperature (RT), respiration rate (RR), drooling score (DS), and daily activity (DA), while lower (P < 0.05) daily rumination (DR), seven-day average milk yield (7AMY), milk yield on sampling day (MY_S), milk yield on test day (MY_T), and lactose percentage (LP) were observed. When comparing the spring (Spring-2) and summer (Summer-2) of the second-parity cows, significant differences were also found in RT, RR, DS, DA, and DR (P < 0.05), corresponding to similar trends with the first parity while having smaller changes. Moreover, significantly negative impacts on performance traits were only observed on fat percentage (FP) and LP. These results showed that there were different biological responses between first- and second-parity Holstein cows. Further, 18 and 17 metabolites were involved in the seasonal response of first- and second-parity cows, respectively. Nine differential metabolites were shared between the two parities, and pathway analyses suggested that cows had an inhibited tricarboxylic acid cycle, increased utilization of lipolysis, and a dysregulated gut microbiome during the summer. The metabolites identified exclusively for each parity highlighted the differences in microbial response and host amino acid metabolism between two parities in response to HS. Moreover, glucose, ethanol, and citrate were identified as potential biomarkers for distinguishing individuals between Spring-1 and Summer-1. Ethanol and acetone were better predictors for distinguishing individuals between Spring-2 and Summer-2. Taken together, the present study demonstrated the impact of naturally induced HS on physiological parameters, production traits, and the blood metabolome of Holstein cows. There are different biological responses and regulation mechanisms between first- and second-parity Holstein cows.


Subject(s)
Lactation , Milk , Animals , Cattle , Female , Pregnancy , Heat-Shock Response , Lactation/physiology , Milk/chemistry , Parity , Seasons
17.
Transl Anim Sci ; 7(1): txad060, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37334246

ABSTRACT

An accurate understanding of boar temperature preferences may allow the swine industry to design and utilize environmental control systems in boar facilities more precisely. Therefore, the study objective was to determine the temperature preferences of sexually mature Duroc, Landrace, and Yorkshire boars. Eighteen, 8.57 ± 0.10-mo-old boars (N = 6 Duroc, 6 Landrace, and 6 Yorkshire; 186.25 ± 2.25 kg) were individually tested in thermal apparatuses (12.20 m × 1.52 m × 1.86 m) that allowed free choice of their preferred temperature within a 8.92 to 27.92 ºC range. For analyses, the apparatuses were divided into five thermal zones (3.71 m2/thermal zone) with temperature recorded 1.17 m above the floor in the middle of each zone. Target temperatures for thermal zones 1 to 5 were 10, 15, 20, 25, and 30 ºC, respectively. All boars were given a 24-h acclimation phase followed by a 24-h testing phase within the thermal apparatuses. Daily feed allotments (3.63 kg/d) were provided to each boar and all boars were allowed to consume all feed prior to entering the thermal apparatus. Water was provided ad libitum within the thermal apparatuses with 1 waterer per thermal zone. During testing, boars were video recorded continuously to evaluate behavior (inactive, active, or other), posture (lying, standing, or other), and thermal zone the boar occupied. All parameters were recorded in 15 min intervals using instantaneous scan sampling. Data were analyzed using GLM in JMP 15. For the analyses, only time spent lying or inactive were used because they were observed most frequently (lying 80.02%, inactive 77.64%) and were deemed to be associated with comfort based on previous research. Percent time spent active (19.73%) or standing (15.87%) were associated with latrine or drinking activity and were too low to accurately analyze as an indicator of thermal preference. Breed did not affect temperature preference (P > 0.05). A cubic regression model determined that boars spent the majority of their time inactive at 25.50 ºC (P < 0.01) and lying (both sternal and lateral) at 25.90 ºC (P < 0.01). These data suggest that boar thermal preferences did not differ by breed and that boars prefer temperatures at the upper end of current guidelines (10.00 to 25.00 ºC).

18.
J Acoust Soc Am ; 153(4): 2223, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37092936

ABSTRACT

Long-range passive source localization is possible in the deep ocean using phase-only matched autoproduct processing (POMAP) [Geroski and Dowling (2021). J. Acoust. Soc. Am. 150, 171-182], an algorithm based on matched field processing that is more robust to environmental mismatch. This paper extends these prior POMAP results by analyzing the localization performance of this algorithm in the presence of environmental noise. The noise rejection performance of POMAP is assessed using both simulated and measured signal data, with noise data based on environmental noise measurements. Herein, signal and noise measurements are from the nominally one-year-long PhilSea10 ocean acoustic propagation experiment. All signals were recorded from a single moored source, placed near the ocean sound channel 129.4 km away from a nearly water-column-spanning distributed vertical line array. The source transmitted linear frequency modulated chirps with nominal bandwidth from 200 to 300 Hz. The noise measurements used in this study were collected in the months after this source stopped transmitting, and synthetic samples of noise are calculated based on the characteristics of this measured noise. The effect that noise rejection algorithms have on the source localization performance of POMAP is also evaluated, but only 1 dB of performance improvement is achieved using these.

19.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37104047

ABSTRACT

An accurate understanding of heat stress (HS) temperatures and phenotypes that indicate HS tolerance is necessary to improve swine HS resilience. Therefore, the study objectives were 1) to identify phenotypes indicative of HS tolerance, and 2) to determine moderate and severe HS threshold temperatures in lactating sows. Multiparous (4.10 ± 1.48) lactating sows and their litters (11.10 ± 2.33 piglets/litter) were housed in naturally ventilated (n = 1,015) or mechanically ventilated (n = 630) barns at a commercial sow farm in Maple Hill, NC, USA between June 9 and July 24, 2021. In-barn dry bulb temperatures (TDB) and relative humidity were continuously recorded for naturally ventilated (26.38 ± 1.21 °C and 83.38 ± 5.40%, respectively) and mechanically ventilated (26.91 ± 1.80 °C and 77.13 ± 7.06%, respectively) barns using data recorders. Sows were phenotyped between lactation days 11.28 ± 3.08 and 14.25 ± 3.26. Thermoregulatory measures were obtained daily at 0800, 1200, 1600, and 2000 h and included respiration rate, and ear, shoulder, rump, and tail skin temperatures. Vaginal temperatures (TV) were recorded in 10 min intervals using data recorders. Anatomical characteristics were recorded, including ear area and length, visual and caliper-assessed body condition scores, and a visually assessed and subjective hair density score. Data were analyzed using PROC MIXED to evaluate the temporal pattern of thermoregulatory responses, phenotype correlations were based on mixed model analyses, and moderate and severe HS inflection points were established by fitting TV as the dependent variable in a cubic function against TDB. Statistical analyses were conducted separately for sows housed in mechanically or naturally ventilated barns because the sow groups were not housed in each facility type simultaneously. The temporal pattern of thermoregulatory responses was similar for naturally and mechanically ventilated barns and several thermoregulatory and anatomical measures were significantly correlated with one another (P < 0.05), including all anatomical measures as well as skin temperatures, respiration rates, and TV. For sows housed in naturally and mechanically ventilated facilities, moderate HS threshold TDB were 27.36 and 26.69 °C, respectively, and severe HS threshold TDB were 29.45 and 30.60 °C, respectively. In summary, this study provides new information on the variability of HS tolerance phenotypes and environmental conditions that constitute HS in commercially housed lactating sows.


Climate change and the associated increase in global temperatures have a well-described negative impact on swine production. Therefore, improving swine heat stress resilience is of utmost importance to reduce the deleterious effects of heat stress on swine health, performance, and welfare. Genomic selection for heat stress resilience may be a viable strategy to improve swine productivity in a changing climate. However, identifying environmental conditions that constitute heat stress and deriving novel traits that can be easily collected on farm and provide accurate and precise predictions of heat stress tolerance is a necessary step. The present study demonstrated that housing conditions had a limited influence on heat stress tolerance phenotypes, several anatomical and thermoregulatory measures were correlated, and housing conditions impacted heat stress threshold temperatures. Results from this study may be applied to large-scale phenotyping initiatives to develop or refine genomic selection indexes for heat stress resilience in pigs.


Subject(s)
Lactation , Thermotolerance , Swine , Animals , Female , Lactation/physiology , Heat-Shock Response , Body Temperature Regulation , Body Temperature
20.
AMIA Annu Symp Proc ; 2023: 253-260, 2023.
Article in English | MEDLINE | ID: mdl-38222381

ABSTRACT

QuizTime is an innovative, asynchronous, spaced learning platform that provides just-in-time learning to increase knowledge and retention. QuizTime was created in 2015, and since then, its effectiveness has been tested and studied across multiple healthcare learning interventions. This paper describes the importance of spaced learning in knowledge acquisition and retention, and the motivation behind the creation of the innovative QuizTime platform. We demonstrate the usefulness of this platform, as shown by multiple case studies using QuizTime, to increase and engage medical students, residents, physicians and health care providers with new quizzes and interventions.


Subject(s)
Computer-Assisted Instruction , Learning , Humans , Educational Measurement , Motivation , Outcome Assessment, Health Care
SELECTION OF CITATIONS
SEARCH DETAIL
...