Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Genet ; 13: 1064332, 2022.
Article in English | MEDLINE | ID: mdl-36685934

ABSTRACT

Maternal effects are an important source of phenotypic variance, whereby females influence offspring developmental trajectory beyond direct genetic contributions, often in response to changing environmental conditions. However, relatively little is known about the mechanisms by which maternal experience is translated into molecular signals that shape offspring development. One such signal may be maternal RNA transcripts (mRNAs and miRNAs) deposited into maturing oocytes. These regulate the earliest stages of development of all animals, but are understudied in most insects. Here we investigated the effects of female internal (body condition) and external (time of season) environmental conditions on maternal RNA in the maturing oocytes and 24-h-old eggs (24-h eggs) of alfalfa leafcutting bees. Using gene expression and WGCNA analysis, we found that females adjust the quantity of mRNAs related to protein phosphorylation, transcriptional regulation, and nuclease activity deposited into maturing oocytes in response to both poor body condition and shorter day lengths that accompany the late season. However, the magnitude of these changes was higher for time of season. Females also adjusted miRNA deposition in response to seasonal changes, but not body condition. We did not observe significant changes in maternal RNAs in response to either body condition or time of season in 24-h eggs, which were past the maternal-to-zygotic transition. Our results suggest that females adjust the RNA transcripts they provide for offspring to regulate development in response to both internal and external environmental cues. Variation in maternal RNAs may, therefore, be important for regulating offspring phenotype in response to environmental change.

2.
Sci Rep ; 11(1): 2993, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542351

ABSTRACT

Increasing evidence suggests the microbiome plays an important role in bee ecology and health. However, the relationship between bees and their bacterial symbionts has only been explored in a handful of species. We characterized the microbiome across the life cycle of solitary, ground-nesting alkali bees (Nomia melanderi). We find that feeding status is a major determinant of microbiome composition. The microbiome of feeding larvae was similar to that of pollen provisions, but the microbiome of post-feeding larvae (pre-pupae) was similar to that of the brood cell walls and newly-emerged females. Feeding larvae and pollen provisions had the lowest beta diversity, suggesting the composition of larval diet is highly uniform. Comparisons between lab-reared, newly-emerged, and nesting adult females suggest that the hindgut bacterial community is largely shaped by the external environment. However, we also identified taxa that are likely acquired in the nest or which increase or decrease in relative abundance with age. Although Lactobacillus micheneri was highly prevalent in pollen provisions, it was only detected in one lab-reared female, suggesting it is primarily acquired from environmental sources. These results provide the foundation for future research on metagenomic function and development of probiotics for these native pollinators.


Subject(s)
Bees/microbiology , Lactobacillus/isolation & purification , Larva/microbiology , Microbiota/genetics , Alkalies/metabolism , Animals , Bees/genetics , Bees/metabolism , Cell Wall/metabolism , Diet , Female , Lactobacillus/genetics , Larva/genetics , Larva/metabolism , Pollen/microbiology
3.
J Exp Biol ; 224(Pt 6)2021 03 28.
Article in English | MEDLINE | ID: mdl-33602679

ABSTRACT

In social insects, changes in behavior are often accompanied by structural changes in the brain. This neuroplasticity may come with experience (experience-dependent) or age (experience-expectant). Yet, the evolutionary relationship between neuroplasticity and sociality is unclear, because we know little about neuroplasticity in the solitary relatives of social species. We used confocal microscopy to measure brain changes in response to age and experience in a solitary halictid bee (Nomia melanderi). First, we compared the volume of individual brain regions among newly emerged females, laboratory females deprived of reproductive and foraging experience, and free-flying, nesting females. Experience, but not age, led to significant expansion of the mushroom bodies - higher-order processing centers associated with learning and memory. Next, we investigated how social experience influences neuroplasticity by comparing the brains of females kept in the laboratory either alone or paired with another female. Paired females had significantly larger olfactory regions of the mushroom bodies. Together, these experimental results indicate that experience-dependent neuroplasticity is common to both solitary and social taxa, whereas experience-expectant neuroplasticity may be an adaptation to life in a social colony. Further, neuroplasticity in response to social chemical signals may have facilitated the evolution of sociality.


Subject(s)
Alkalies , Mushroom Bodies , Animals , Bees , Brain , Female , Neuronal Plasticity , Social Behavior
4.
J Exp Biol ; 220(Pt 20): 3794-3801, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28821570

ABSTRACT

Eusocial insect colonies are defined by extreme variation in reproductive activity among castes, but the ancestral conditions from which this variation arose are unknown. Investigating the factors that contribute to variation in reproductive physiology among solitary insects that are closely related to social species can help to fill this gap. We experimentally tested the role of nutrition, juvenile hormone (JH) and social cues on reproductive maturation in solitary alkali bees (Halictidae: Nomia melanderi). We found that alkali bee females emerge from overwintering with small Dufour's glands and small ovaries, containing oocytes in the early stages of development. Oocyte maturation occurs rapidly, and is staggered between the two ovaries. Lab-reared females reached reproductive maturity without access to mates or nesting opportunities, and many had resorbed oocytes. Initial activation of these reproductive structures does not depend on pollen consumption, though dietary protein or lipids may be necessary for long-term reproductive activity. JH is likely to be a limiting factor in alkali bee reproductive activation, as females treated with JH were more likely to develop mature oocytes and Dufour's glands. Unlike for related social bees, the effects of JH were not suppressed by the presence of older, reproductive females. These results provide valuable insight into the factors that influence reproductive activity in an important native pollinator, and those that may have been particularly influential in the evolution of reproductive castes.


Subject(s)
Animal Nutritional Physiological Phenomena , Bees/physiology , Juvenile Hormones/metabolism , Animals , Cues , Female , Reproduction , Social Behavior
5.
Proc Biol Sci ; 284(1847)2017 01 25.
Article in English | MEDLINE | ID: mdl-28100820

ABSTRACT

In social bees, foraging behaviour is correlated with reproductive status and sucrose sensitivity via endocrine pathways. This association led to the hypothesis that division of labour in social insect societies is derived from an ancestral ground plan that functions to synchronize dietary preferences with reproductive needs in solitary insects. However, the relationship between these traits is unknown for solitary bees, which represent the ancestral state of social bees. We used the proboscis extension response assay to measure sucrose response among reproductive females of the solitary alkali bee (Nomia melanderi) as a function of acute juvenile hormone (JH) treatments and reproductive physiology. We also tested long-term effects of JH on reproductive development in newly emerged females. JH did not have short-term effects on reproductive physiology or sucrose response, but did have significant long-term effects on ovary and Dufour's gland development. Dufour's gland size, not ovary development, was a significant predictor of sucrose response. This provides support for the reproductive ground plan hypothesis, because the Dufour's gland has conserved reproductive functions in bees. Differing results from this study and honeybees suggest independent origins of division of labour may have evolved via co-option of different components of a conserved ground plan.


Subject(s)
Bees/physiology , Juvenile Hormones/pharmacology , Ovary/physiology , Sucrose , Animals , Female , Organ Size , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...