Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Insects ; 15(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786914

ABSTRACT

(1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue virus. Vector control using insecticides is a major strategy implemented in managing mosquito-borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study, we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%), deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance) mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G, and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y). (3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality). The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were detected. It remains to be determined whether these mutations contribute to pyrethroid resistance. (4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically involving P450s monooxygenases. The levels of resistance against different insecticide classes are a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors should be used to minimize disease prevalence in the country.

2.
PLoS Genet ; 19(6): e1010814, 2023 06.
Article in English | MEDLINE | ID: mdl-37384781

ABSTRACT

Meta-diamides (e.g. broflanilide) and isoxazolines (e.g. fluralaner) are novel insecticides that target the resistant to dieldrin (RDL) subunit of insect γ-aminobutyric acid receptors (GABARs). In this study, we used in silico analysis to identify residues that are critical for the interaction between RDL and these insecticides. Substitution of glycine at the third position (G3') in the third transmembrane domain (TMD3) with methionine (G3'M TMD3), which is present in vertebrate GABARs, had the strongest effect on fluralaner binding. This was confirmed by expression of RDL from the rice stem borer, Chilo suppressalis (CsRDL) in oocytes of the African clawed frog, Xenopus laevis, where the G3'MTMD3 mutation almost abolished the antagonistic action of fluralaner. Subsequently, G3'MTMD3 was introduced into the Rdl gene of the fruit fly, Drosophila melanogaster, using the CRISPR/Cas9 system. Larvae of heterozygous lines bearing G3'MTMD3 did not show significant resistance to avermectin, fipronil, broflanilide, and fluralaner. However, larvae homozygous for G3'MTMD3 were highly resistant to broflanilide and fluralaner whilst still being sensitive to fipronil and avermectin. Also, homozygous lines showed severely impaired locomotivity and did not survive to the pupal stage, indicating a significant fitness cost associated with G3'MTMD3. Moreover, the M3'GTMD3 mutation in the mouse Mus musculus α1ß2 GABAR increased sensitivity to fluralaner. Taken together, these results provide convincing in vitro and in vivo evidence for both broflanilide and fluralaner acting on the same amino acid site, as well as insights into potential mechanisms leading to target-site resistance to these insecticides. In addition, our findings could guide further modification of isoxazolines to achieve higher selectivity for the control of insect pests with minimal effects on mammals.


Subject(s)
Insecticides , Receptors, GABA , Animals , Mice , Receptors, GABA/genetics , Receptors, GABA/metabolism , Dieldrin , Insecticides/pharmacology , Insecticides/chemistry , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Larva/metabolism , Mammals/metabolism
3.
Med Vet Entomol ; 36(4): 424-434, 2022 12.
Article in English | MEDLINE | ID: mdl-35593512

ABSTRACT

In Lao People's Democratic Republic, Aedes aegypti (Linnaeus 1762) and Aedes albopictus (Skuse 1894) mosquitoes (Diptera: Culicidae) are vectors of arboviral diseases such as dengue. As the treatment for these diseases is limited, control of the vectors with the use of pyrethroid insecticides is still essential. However, mutations in the voltage-gated sodium channel (vgsc) gene giving rise to pyrethroid resistance are threatening vector control programs. Here, we analysed both Ae. aegypti and Ae. albopictus mosquitoes, which were collected in different districts of Laos (Kaysone Phomvihane, Vangvieng, Saysettha and Xaythany), for vgsc mutations commonly found throughout Asia (S989P, V1016G and F1534C). Sequences of the vgsc gene showed that the F1534C mutation was prevalent in both Aedes species. S989P and V1016G mutations were detected in Ae. aegypti from each site and were always found together. In addition, the mutation T1520I was seen in Ae. albopictus mosquitoes from Saysettha district as well as in all Ae. aegypti samples. Thus, mutations in the vgsc gene of Ae. aegypti are prevalent in the four districts studied indicating growing insecticide resistance throughout Laos. Constant monitoring programmes and alternative strategies for controlling Aedes should be utilized in order to prolong the effectiveness of pyrethroids thereby maximizing vector control.


Subject(s)
Aedes , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Aedes/genetics , Laos , Mosquito Vectors/genetics , Introns , Insecticides/pharmacology , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Voltage-Gated Sodium Channels/genetics , Mutation
4.
Pestic Biochem Physiol ; 182: 105055, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35249651

ABSTRACT

Insect nicotinic acetylcholine receptors (nAChRs) are molecular targets of highly effective insecticides such as neonicotinoids. Functional expression of these receptors provides useful insights into their functional and pharmacological properties. Here, we report that the α5 nAChR subunit of the honey bee, Apis mellifera, functionally expresses in Xenopus laevis oocytes, which is the first time a homomeric insect nAChR has been robustly expressed in a heterologous system without the need for chaperone proteins. Using two-electrode voltage-clamp electrophysiology we show that the α5 receptor has low sensitivity to acetylcholine with an EC50 of 2.37 mM. However, serotonin acts as an agonist with a considerably lower EC50 at 119 µM that is also more efficacious than acetylcholine in activating the receptor. Molecular modelling indicates that residues in the complementary binding site may be involved in the selectivity towards serotonin. This is the first report of a ligand-gated ion channel activated by serotonin from an insect and phylogenetic analysis shows that the α5 subunit of A. mellifera and other non-Dipteran insects, including pest species, belong to a distinct subgroup of subunits, which may represent targets for the development of novel classes of insecticides.


Subject(s)
Receptors, Nicotinic , Acetylcholine/pharmacology , Animals , Bees , Neonicotinoids/pharmacology , Oocytes/metabolism , Phylogeny , Receptors, Nicotinic/metabolism , Serotonin/pharmacology , Xenopus laevis/metabolism
5.
Pestic Biochem Physiol ; 181: 105030, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35082026

ABSTRACT

Insect nicotinic acetylcholine receptors (nAChR) are molecular targets of highly effective insecticides. The use of chaperone proteins has been key to successful functional expression of these receptors in heterologous systems, permitting functional and pharmacological studies of insect nAChRs with particular subunit composition. Here, we report the first use of the chaperone protein, NACHO, to enable functional expression of an insect nAChR, the α6 subunit from Apis mellifera, in Xenopus laevis oocytes. This is also the first report of functional expression of a homomeric insect α6 nAChR. Using two-electrode voltage-clamp electrophysiology we show that the acetylcholine EC50 of the α6 receptor is 0.88 µM and that acetylcholine responses are antagonized by α-bungarotoxin. Spinosad showed agonist actions and kept the ion channel open when co-applied with acetylcholine, reinforcing the α6 nAChR subunit as a key molecular target for the spinosyn class of insecticide. The use of NACHO may provide a basis for future expression studies of insect α6 nAChRs, potentially providing a tool for the discovery of novel insecticides.


Subject(s)
Insecticides , Receptors, Nicotinic , Acetylcholine/pharmacology , Animals , Bees , Insecta , Insecticides/pharmacology , Oocytes , Receptors, Nicotinic/genetics , Xenopus laevis
6.
Pestic Biochem Physiol ; 181: 105017, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35082040

ABSTRACT

Broflanilide is a novel insecticide with a unique mode of action on the insect GABA receptor and is registered worldwide for the control of agricultural pests. It shows high efficacy in controlling the fall armyworm (FAW) Spodoptera frugiperda, which is a destructive pest to various crops. FAW was exposed to sublethal concentrations of broflanilide to determine its impact on insect development. Sublethal doses (LD10 and LD30) caused failure of ecdysis, reduced body length of larvae, malformation of pupae, and vestigial wing formation in adults. Also, broflanilide at LD30 significantly reduced the amount of molting hormone (MH). After exposure to LD10 or LD30 broflanilide, expression of five Halloween genes, which participate in MH biosynthesis, were found to be altered. Specifically, the transcript levels of SfrCYP307A1 (Spook), SfrCYP314A1 (Shade) and SfrCYP315A1 (Shadow) in 3rd day larvae were significantly decreased as well as SfrCYP302A1 (Disembodied) and SfrCYP306A1 (Phantom) in 5th day pupae. In contrast, the transcript levels of SfrCYP302A1 in 3rd day larvae, SfrCYP307A1 and SfrCYP314A1 in 5th day pupae, and SfrCYP306A1, SfrCYP307A1 and SfrCYP315A1 in 0.5th day adults were significantly increased. Our results demonstrate that broflanilide caused the failure of ecdysis in FAW possibly by influencing the intake of cholesterol through inhibition of feeding and also via altering expression of genes important for MH biosynthesis.


Subject(s)
Ecdysone , Molting , Animals , Benzamides , Fluorocarbons , Larva , Spodoptera/genetics
7.
J Agric Food Chem ; 69(39): 11582-11591, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34555899

ABSTRACT

The ionotropic γ-aminobutyric acid (iGABA) receptor is commonly considered as a fast inhibitory channel and is an important insecticide target. Since 1990, RDL, LCCH3, and GRD have been successively isolated and found to be potential subunits of the insect iGABA receptor. More recently, one orphan gene named 8916 was found and considered to be another potential iGABA receptor subunit according to its amino acid sequence. However, little information about 8916 has been reported. Here, the 8916 subunit from Chilo suppressalis was studied to determine whether it can form part of a functional iGABA receptor by co-expressing this subunit with CsRDL1 or CsLCCH3 in the Xenopus oocyte system. Cs8916 or CsLCCH3 did not form functional ion channels when expressed alone. However, Cs8916 was able to form heteromeric ion channels when expressed with either CsLCCH3 or CsRDL1. The recombinant heteromeric Cs8916/LCCH3 channel was a cation-selective channel, which was sensitive to GABA or ß-alanine. The current of the Cs8916/LCCH3 channel was inhibited by dieldrin, endosulfan, fipronil, or ethiprole. In contrast, fluralaner, broflanilide, and avermectin showed little effect on the Cs8916/LCCH3 channel (IC50s > 10 000 nM). The Cs8916/RDL1 channel was sensitive to GABA, but was significantly different in EC50 and Imax for GABA to those of homomeric CsRDL1. Fluralaner, fipronil, or dieldrin showed antagonistic actions on Cs8916/RDL1. In conclusion, Cs8916 is a potential iGABA receptor subunit, which can interact with CsLCCH3 to generate a cation-selective channel that is sensitive to several insecticides. Also, as Cs8916/RDL1 has a higher EC50 than homomeric CsRDL1, Cs8916 may affect the physiological functions of CsRDL1 and therefore play a role in fine-tuning GABAergic signaling.


Subject(s)
Insecticides , Moths , Amino Acid Sequence , Animals , Insecticides/pharmacology , Moths/metabolism , Receptors, GABA/genetics , Receptors, GABA/metabolism , Receptors, GABA-A , gamma-Aminobutyric Acid
8.
Pest Manag Sci ; 77(8): 3787-3799, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33347700

ABSTRACT

BACKGROUND: Cockroaches are serious urban pests that can transfer disease-causing microorganisms as well as trigger allergic reactions and asthma. They are commonly managed by pesticides that act on cys-loop ligand-gated ion channels (cysLGIC). To provide further information that will enhance our understanding of how insecticides act on their molecular targets in cockroaches, we used genome and reverse transcriptase polymerase chain reaction (RT-PCR) data to characterize the cysLGIC gene superfamilies from Blattella germanica and Periplaneta americana. RESULTS: The B. germanica and P. americana cysLGIC superfamilies consist of 30 and 32 subunit-encoding genes, respectively, which are the largest insect cysLGIC superfamilies characterized to date. As with other insects, the cockroaches possess ion channels predicted to be gated by acetylcholine, γ-aminobutyric acid, glutamate and histamine, as well as orthologues of the drosophila pH-sensitive chloride channel (pHCl), CG8916 and CG12344. The large cysLGIC superfamilies of cockroaches are a result of an expanded number of divergent nicotinic acetylcholine receptor subunits, with B. germanica and P. americana, respectively, possessing eight and ten subunit genes. Diversity of the cockroach cysLGICs is also broadened by alternative splicing and RNA A-to-I editing. Unusually, both cockroach species possess a second glutamate-gated chloride channel as well as another CG8916 subunit. CONCLUSION: These findings on B. germanica and P. americana enhance our understanding of the evolution of the insect cysLGIC superfamily and provide a useful basis for the study of their function, the detection and management of insecticide resistance, and for the development of improved pesticides with greater specificity towards these major pests. © 2020 Society of Chemical Industry.


Subject(s)
Blattellidae , Cockroaches , Ligand-Gated Ion Channels , Periplaneta , Receptors, Nicotinic , Animals , Insecta
9.
J Hazard Mater ; 394: 122521, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32279005

ABSTRACT

Broflanilide, a novel meta-diamide insecticide, shows high insecticidal activity against agricultural pests and is scheduled to be launched onto the market in 2020. However, little information about its potential toxicological effects on fish has been reported. In this study, broflanilide showed low toxicity to the zebrafish, Danio rerio, with LC50 > 10 mg L-1 at 96 h and also did not inhibit GABA-induced currents of the heteromeric Drα1ß2Sγ2 GABA receptor. Broflanilide showed medium bioconcentration level with a bioconcentration factor at steady state (BCFss) of 10.02 and 69.40 in D. rerio at 2.00 mg L-1 and 0.20 mg L-1, respectively. In the elimination process, the concentration of broflanilide rapidly decreased within two days and slowly dropped below the limit of quantification after ten days. In the 2.00 mg L-1 broflanilide treatment, CYP450 activity was significantly increased up to 3.11-fold during eight days. Glutathione-S- transferase (GST) activity significantly increased by 91.44 % within four days. In conclusion, the acute toxicity of broflanilide was low, but it might induce chronic toxicity, affecting metabolism. To our knowledge, this is the first report of the toxicological effects of broflanilide on an aquatic organism, which has the potential to guide the use of broflanilide in the field.


Subject(s)
Benzamides/toxicity , Insecticides/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Benzamides/metabolism , Bioaccumulation , Cytochrome P-450 Enzyme System/metabolism , Glutathione Transferase/metabolism , Insecticides/metabolism , Oocytes/drug effects , Receptors, GABA/drug effects , Water Pollutants, Chemical/metabolism , Xenopus laevis
10.
J Med Entomol ; 57(3): 815-823, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31807752

ABSTRACT

The gamma-aminobutyric acid (GABA) receptor, RDL, plays important roles in neuronal signaling and is the target of highly effective insecticides. A mutation in RDL, commonly A296S, underlies resistance to several insecticides such as cyclodienes. Even though the use of cyclodienes has been banned, the occurrence of mutations substituting A296 is notably high in mosquitoes from several countries. Here, we report a survey investigating the prevalence of the Rdl mutant allele in mosquitoes from Laos, a country where mosquito-borne diseases such as malaria and dengue fever are health concerns. Anopheles and Aedes mosquitoes were collected from 12 provinces in Laos. Adult bioassays on Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) showed that all the populations tested were susceptible to dieldrin (4%) following WHO protocols. Exon 7 from a total of 791 mosquitoes was sequenced to identify the amino acid encoded for at 296 of RDL. Only one of these mosquitoes, Anopheles maculatus rampae Harbach and Somboon (Diptera: Culicidae) from Attapeu, carried the mutant allele being heterozygous for A296S. We therefore found a general lack of the Rdl mutant allele indicating that mosquitoes from Laos are not exposed to insecticides that act on the GABA receptor compared to mosquitoes in several other countries. Identifying the prevalence of the Rdl mutation may help inform the potential use of alternative insecticides that act on the GABA receptor should there be a need to replace pyrethroids in order to prevent/manage resistance.


Subject(s)
Aedes/genetics , Anopheles/genetics , Dieldrin/pharmacology , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Aedes/metabolism , Alleles , Animals , Anopheles/metabolism , Dengue , Insect Proteins/metabolism , Laos , Malaria , Mosquito Vectors/metabolism , Mutation
12.
Int J Insect Sci ; 10: 1179543318804782, 2018.
Article in English | MEDLINE | ID: mdl-30559597

ABSTRACT

Recently, Taylor-Wells et al published evidence that the γ-aminobutyric acid (GABA) receptor, resistance to dieldrin (RDL), from mosquitoes undergoes RNA A-to-I editing to generate an extraordinarily large range of isoforms. This editing was found to affect GABA receptor pharmacology, as it influenced the potency of GABA and ivermectin. This highlights RNA editing as a species-specific mechanism to fine-tune receptor function as well as possibly increase tolerance of mosquitoes to certain insecticides. This commentary also considers novel findings from analysis of Rdl transcripts from individual mosquitoes taken from different geographical areas.

13.
Nature ; 563(7732): 501-507, 2018 11.
Article in English | MEDLINE | ID: mdl-30429615

ABSTRACT

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Subject(s)
Aedes/genetics , Arbovirus Infections/virology , Arboviruses , Genome, Insect/genetics , Genomics/standards , Insect Control , Mosquito Vectors/genetics , Mosquito Vectors/virology , Aedes/virology , Animals , Arbovirus Infections/transmission , Arboviruses/isolation & purification , DNA Copy Number Variations/genetics , Dengue Virus/isolation & purification , Female , Genetic Variation/genetics , Genetics, Population , Glutathione Transferase/genetics , Insecticide Resistance/drug effects , Male , Molecular Sequence Annotation , Multigene Family/genetics , Pyrethrins/pharmacology , Reference Standards , Sex Determination Processes/genetics
14.
Int J Mol Sci ; 19(8)2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30065178

ABSTRACT

The insect GABA receptor, RDL (resistance to dieldrin), is a cys-loop ligand-gated ion channel (cysLGIC) that plays a central role in neuronal signaling, and is the target of several classes of insecticides. Many insects studied to date possess one Rdl gene; however, there is evidence of two Rdls in aphids. To characterise further this insecticide target from pests that cause millions of dollars' worth of crop damage each year, we identified the complete cysLGIC gene superfamily of the pea aphid, Acyrthosiphon pisum, using BLAST analysis. This confirmed the presence of two Rdl-like genes (RDL1 and RDL2) that likely arose from a recent gene duplication. When expressed individually in Xenopus laevis oocytes, both subunits formed functional ion channels gated by GABA. Alternative splicing of RDL1 influenced the potency of GABA, and the potency of fipronil was different on the RDL1bd splice variant and RDL2. Imidacloprid and clothianidin showed no antagonistic activity on RDL1, whilst 100 µM thiacloprid reduced the GABA responses of RDL1 and RDL2 to 55% and 62%, respectively. It was concluded that gene duplication of Rdl may have conferred increased tolerance to natural insecticides, and played a role in the evolution of insect cysLGICs.


Subject(s)
Alternative Splicing/drug effects , Aphids/genetics , Alternative Splicing/genetics , Animals , Aphids/drug effects , Gene Duplication/drug effects , Gene Duplication/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Neonicotinoids/pharmacology , Pyrazoles/pharmacology , Thiazines/pharmacology
15.
Environ Pollut ; 242(Pt A): 507-518, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30005263

ABSTRACT

Pesticides, in particular insecticides, can be very beneficial but have also been found to have harmful side effects on non-target insects. Butterflies play an important role in ecosystems, are well monitored and are recognised as good indicators of environmental health. The amount of information already known about butterfly ecology and the increased availability of genomes make them a very valuable model for the study of non-target effects of pesticide usage. The effects of pesticides are not simply linear, but complex through their interactions with a large variety of biotic and abiotic factors. Furthermore, these effects manifest themselves at a variety of levels, from the molecular to metapopulation level. Research should therefore aim to dissect these complex effects at a number of levels, but as we discuss in this review, this is seldom if ever done in butterflies. We suggest that in order dissect the complex effects of pesticides on butterflies we need to integrate detailed molecular studies, including characterising sequence variability of relevant target genes, with more classical evolutionary ecology; from direct toxicity tests on individual larvae in the laboratory to field studies that consider the potentiation of pesticides by ecologically relevant environmental biotic and abiotic stressors. Such integration would better inform population-level responses across broad geographical scales and provide more in-depth information about the non-target impacts of pesticides.


Subject(s)
Butterflies/physiology , Insecticides/toxicity , Animals , Ecosystem , Insecta , Larva , Pesticides/toxicity
16.
Insect Biochem Mol Biol ; 93: 1-11, 2018 02.
Article in English | MEDLINE | ID: mdl-29223796

ABSTRACT

The insect GABA receptor, RDL, is the target of several classes of pesticides. The peptide sequences of RDL are generally highly conserved between diverse insects. However, RNA A-to-I editing can effectively alter amino acid residues of RDL in a species specific manner, which can affect the potency of GABA and possibly insecticides. We report here that RNA A-to-I editing alters the gene products of Rdl in three mosquito disease vectors, recoding five amino acid residues in RDL of Aedes aegypti and six residues in RDLs of Anopheles gambiae and Culex pipiens, which is the highest extent of editing in RDL observed to date. Analysis of An. gambiae Rdl cDNA sequences identified 24 editing isoforms demonstrating a considerable increase in gene product diversity. RNA editing influenced the potency of the neurotransmitter, GABA, on An. gambiae RDL editing isoforms expressed in Xenopus laevis oocytes, as demonstrated by EC50s ranging from 5 ± 1 to 246 ± 41 µM. Fipronil showed similar potency on different editing isoforms, with IC50s ranging from 0.18 ± 0.08 to 0.43 ± 0.09 µM. In contrast, editing of An. gambiae RDL affected the activating, potentiating and inhibiting actions of ivermectin. For example, ivermectin potentiated currents induced by GABA at the EC20 concentration in the unedited isoform but not in the fully edited variant. Editing of a residue in the first transmembrane domain or the cys-loop influenced this potentiation, highlighting residues involved in the allosteric mechanisms of cys-loop ligand-gated ion channels. Understanding the interactions of ivermectin with molecular targets may have relevance to mosquito control in areas where people are administered with ivermectin to treat parasitic diseases.


Subject(s)
Aedes/genetics , Anopheles/genetics , Insect Proteins/genetics , Insecticides/pharmacology , Ivermectin/pharmacology , RNA Editing , Receptors, GABA/genetics , Aedes/metabolism , Amino Acid Sequence , Animals , Anopheles/metabolism , Culex/genetics , Culex/metabolism , Insect Proteins/metabolism , Insecticides/agonists , Insecticides/antagonists & inhibitors , Ivermectin/agonists , Ivermectin/antagonists & inhibitors , Receptors, GABA/metabolism , Sequence Alignment , Species Specificity
17.
Pestic Biochem Physiol ; 151: 59-66, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30704714

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are the main target of neonicotinoid insecticides, which are widely used in crop protection against insect pests. Electrophysiological and molecular approaches have demonstrated the presence of several nAChR subtypes with different affinities for neonicotinoid insecticides. However, the precise mode of action of neonicotinoids on insect nAChRs remains to be elucidated. Radioligand binding studies with [3H]-α-bungarotoxin and [3H]-imidacloprid have proved instructive in understanding ligand binding interactions between insect nAChRs and neonicotinoid insecticides. The precise binding site interactions have been established using membranes from whole body and specific tissues. In this review, we discuss findings concerning the number of nAChR binding sites against neonicotinoid insecticides from radioligand binding studies on native tissues. We summarize the data available in the literature and compare the binding properties of the most commonly used neonicotinoid insecticides in several insect species. Finally, we demonstrate that neonicotinoid-nAChR binding sites are also linked to biological samples used and insect species.


Subject(s)
Insecticides/pharmacology , Neonicotinoids/chemistry , Neonicotinoids/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Animals , Binding Sites , Humans , Protein Binding/drug effects
18.
Neurotoxicology ; 60: 207-213, 2017 May.
Article in English | MEDLINE | ID: mdl-27288983

ABSTRACT

The insect GABA receptor, RDL (resistance to dieldrin), plays central roles in neuronal signalling and is the target of several classes of insecticides. To study the GABA receptor from an important pollinator species, we cloned Rdl cDNA from the honey bee, Apis mellifera. Three Rdl variants were identified, arising from differential use of splice acceptor sites in the large intracellular loop between transmembrane regions 3 and 4. These variants were renamed from previously, as Amel_RDLvar1, Amel_RDLvar2 and Amel_RDLvar3. When expressed in Xenopus laevis oocytes, the three variants showed no difference in sensitivity to the agonist, GABA, with EC50s of 29µM, 20µM and 29µM respectively. Also, the potencies of the antagonists, fipronil and imidacloprid, were similar on all three variants. Fipronil IC50 values were 0.18µM, 0.31µM and 0.20µM whereas 100µM imidacloprid reduced the GABA response by 17%, 24% and 31%. The possibility that differential splicing of the RDL intracellular loop may represent a species-specific mechanism leading to insensitivity to insecticides is discussed.


Subject(s)
Bees/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Receptors, GABA/genetics , Animals , Dieldrin , GABA Agonists/pharmacology , Insect Proteins/genetics , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Oocytes , Protein Isoforms/genetics , Pyrazoles/pharmacology , Xenopus laevis , gamma-Aminobutyric Acid/pharmacology
19.
J Neurochem ; 135(4): 705-13, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26296809

ABSTRACT

A mutation in the second transmembrane domain of the GABA receptor subunit, Rdl, is associated with resistance to insecticides such as dieldrin and fipronil. Molecular cloning of Rdl cDNA from a strain of the malaria mosquito, Anopheles gambiae, which is highly resistant to dieldrin revealed this mutation (A296G) as well as another mutation in the third transmembrane domain (T345M). Wild-type, A296G, T345M and A296G + T345M homomultimeric Rdl were expressed in Xenopus laevis oocytes and their sensitivities to fipronil, deltamethrin, 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT), imidacloprid and spinosad were measured using two-electrode voltage-clamp electrophysiology. Spinosad and DDT had no agonist or antagonist actions on Rdl. However, fipronil, deltamethrin and imidacloprid decreased GABA-evoked currents. These antagonistic actions were either reduced or abolished with the A296G and the A296G + T345M mutations while T345M alone appeared to have no significant effect. In conclusion, this study identifies another mutation in the mosquito Rdl that is associated with insecticide resistance. While T345M itself does not affect insecticide sensitivity, it may serve to offset the structural impact of A296G. The present study also highlights Rdl as a potential secondary target for neonicotinoids and pyrethroids. We show for the first time that deltamethrin (a pyrethroid insecticide) and imidacloprid (a neonicotinoid insecticide) act directly on the insect GABA receptor, Rdl. Our findings highlight Rdl as a potential secondary target of pyrethroids and neonicotinoids mutations in which may contribute to resistance to these widely used insecticides.


Subject(s)
Drosophila Proteins/metabolism , Gene Expression Regulation/drug effects , Guanidine/analogs & derivatives , Insecticides/pharmacology , Pyrethrins/pharmacology , Receptors, GABA-A/metabolism , Animals , Chloride Channels/metabolism , Culicidae , Dose-Response Relationship, Drug , Drosophila Proteins/genetics , Drug Interactions , Electric Stimulation , Gene Expression Regulation/genetics , Guanidine/pharmacology , Molecular Sequence Data , Mutagenesis, Site-Directed/methods , Oocytes , Receptors, GABA-A/genetics , Xenopus laevis/anatomy & histology , gamma-Aminobutyric Acid/pharmacology
20.
Genome Biol ; 15(10): 466, 2014.
Article in English | MEDLINE | ID: mdl-25315136

ABSTRACT

BACKGROUND: Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. RESULTS: We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation. CONCLUSIONS: This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies.


Subject(s)
Adaptation, Physiological , Genome , Houseflies/genetics , Insect Vectors/genetics , Animals , Base Sequence , Drosophila melanogaster/genetics , Female , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL