Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Med Chem ; 13(12): 1614-1620, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36545433

ABSTRACT

Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we report the synthesis of piperidine-based 3D fragment building blocks - 20 regio- and diastereoisomers of methyl substituted pipecolinates using simple and general synthetic methods. cis-Piperidines, accessed through a pyridine hydrogenation were transformed into their trans-diastereoisomers using conformational control and unified reaction conditions. Additionally, diastereoselective lithiation/trapping was utilised to access trans-piperidines. Analysis of a virtual library of fragments derived from the 20 cis- and trans-disubstituted piperidines showed that it consisted of 3D molecules with suitable molecular properties to be used in fragment-based drug discovery programs.

2.
Nat Commun ; 11(1): 5047, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028810

ABSTRACT

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Peptide Fragments/chemistry , Viral Nonstructural Proteins/chemistry , Betacoronavirus/enzymology , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Drug Design , Mass Spectrometry , Models, Molecular , Peptide Fragments/metabolism , Protein Conformation , SARS-CoV-2 , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Static Electricity , Viral Nonstructural Proteins/metabolism
3.
Chemistry ; 26(41): 8969-8975, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32315100

ABSTRACT

Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we describe a workflow for the design and synthesis of 56 3D disubstituted pyrrolidine and piperidine fragments that occupy under-represented areas of fragment space (as demonstrated by a principal moments of inertia (PMI) analysis). A key, and unique, underpinning design feature of this fragment collection is that assessment of fragment shape and conformational diversity (by considering conformations up to 1.5 kcal mol-1 above the energy of the global minimum energy conformer) is carried out prior to synthesis and is also used to select targets for synthesis. The 3D fragments were designed to contain suitable synthetic handles for future fragment elaboration. Finally, by comparing our 3D fragments with six commercial libraries, it is clear that our collection has high three-dimensionality and shape diversity.

SELECTION OF CITATIONS
SEARCH DETAIL