Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Analyst ; 148(13): 2956-2964, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37264678

ABSTRACT

During the corona virus disease 2019 (COVID-19) pandemic period, rapid screening of covid-19 patients has been of great interest by developing a fluorescent sensor for complexation with nonanal, which is a marker for Covid-19 detection in sweat. Solid phase micro-extraction gas chromatography-mass spectrometry (SPME GC-MS) was initially used to quantify nonanal in armpit sweat samples based on an external calibration curve. A sample containing a nonanal content above the threshold of 1.04 µL is expected to be COVID-19 positive with a sensitivity and specificity of 87% and 89%, respectively, validated by comparison with RT-PCR results. For more practical applications, helicene dye-encapsulated ethyl cellulose, namely EC@dyeNH, was applied to screen 140 sweat samples collected from the foreheads of volunteers. The mixed sensor and sweat solution droplets were then visualized and imaged under blacklight. The COVID-19 positive droplets exhibited yellow fluorescence emission, the brightness of which could be measured by using ImageJ in the grey scale. With the optimum color intensity of >73 for positive results, the screening performance was observed with a sensitivity and specificity of 96% and 93%, respectively. The overall test time of this method is approximately less than 15 min. This alternative method offers a promising practical screening approach for the diagnosis of COVID-19 in sweat.


Subject(s)
COVID-19 , Humans , Gas Chromatography-Mass Spectrometry , COVID-19/diagnosis , Sweat/chemistry , Sweat/virology , COVID-19 Testing
2.
Biomater Transl ; 4(2): 67-84, 2023.
Article in English | MEDLINE | ID: mdl-38283919

ABSTRACT

Oncolytic virus (OV) therapy has been shown to be an effective targeted cancer therapy treatment in recent years, providing an avenue of treatment that poses no damage to surrounding healthy tissues. Not only do OVs cause direct oncolysis, but they also amplify both innate and adaptive immune responses generating long-term anti-tumour immunity. Genetically engineered OVs have become the common promising strategy to enhance anti-tumour immunity, safety, and efficacy as well as targeted delivery. The studies of various OVs have been accomplished through phase I-III clinical trial studies. In addition, the uses of carrier platforms of organic materials such as polymer chains, liposomes, hydrogels, and cell carriers have played a vital role in the potentially targeted delivery of OVs. The mechanism, rational design, recent clinical trials, applications, and the development of targeted delivery platforms of OVs will be discussed in this review.

3.
Article in English | MEDLINE | ID: mdl-36301188

ABSTRACT

Over the past years, lung cancer has been one of the vital cancer-related mortalities worldwide and has inevitably exhibited the highest death rate with the subsequent need for facile and convenient diagnosis approaches to identify the severity of cancer. Previous research has reported long-chain aldehyde compounds such as hexanal, heptanal, octanal, and nonanal as potential biomarkers of lung cancer. Herein, the helicene dye-encapsulated ethyl cellulose (EC@dye-NH) nanosensors have been applied for the potentially sensitive and specific detection of long-chain aldehydes in aqueous media. The sensors contain the intrinsic hydrazide group of dye-NH, which is capable of reacting an aldehyde group via imine formation and the EC backbone. This offers the synergistic forces of hydrophobic interactions with alkyl long-chain aldehydes, which could induce self-assembly encapsulation of EC@dye-NH nanosensors and strong fluorescence responses. The addition of long-chain aldehyde would induce the complete micellar-like nanoparticle formation within 15 min in acetate buffer pH 5.0. The limit of detection (LOD) values of EC@dye-NH nanosensors toward heptanal, octanal, and nonanal were 40, 100, and 10 µM, respectively, without interference from the lung fluid matrices and short-chain aldehydes. For practical applicability, this sensing platform was developed for quantification of the long-chain aldehydes in lung fluid samples with 98-101% recoveries. This EC@dye-NH nanosensor was applied to quantify nonanal contents in lung fluid samples. The results of this method based on EC@dye-NH nanosensors were then validated using standard gas chromatography-mass spectrometry (GC-MS), which gave results consistent with the proposed method. With intracellular imaging application, the EC@dye-NH nanosensors demonstrated excellent intracellular uptake and strong green fluorescence emission upon introducing the nonanal into the lung cancer cells (A549). Thus, the developed nanosensing approach served as the potential fluorescent probes in medical and biological fields, especially for lung cancer disease diagnosis based on highly selective and sensitive detection of long-chain aldehydes.

SELECTION OF CITATIONS
SEARCH DETAIL
...