Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 84(14): 2634-2647.e9, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38964321

ABSTRACT

DNA repair is directly performed by hundreds of core factors and indirectly regulated by thousands of others. We massively expanded a CRISPR inhibition and Cas9-editing screening system to discover factors indirectly modulating homology-directed repair (HDR) in the context of ∼18,000 individual gene knockdowns. We focused on CCAR1, a poorly understood gene that we found the depletion of reduced both HDR and interstrand crosslink repair, phenocopying the loss of the Fanconi anemia pathway. CCAR1 loss abrogated FANCA protein without substantial reduction in the level of its mRNA or that of other FA genes. We instead found that CCAR1 prevents inclusion of a poison exon in FANCA. Transcriptomic analysis revealed that the CCAR1 splicing modulatory activity is not limited to FANCA, and it instead regulates widespread changes in alternative splicing that would damage coding sequences in mouse and human cells. CCAR1 therefore has an unanticipated function as a splicing fidelity factor.


Subject(s)
Alternative Splicing , Fanconi Anemia Complementation Group A Protein , Humans , Animals , Mice , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , Recombinational DNA Repair , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , HEK293 Cells , Exons , CRISPR-Cas Systems , DNA Repair , HeLa Cells , DNA Damage
2.
Nat Aging ; 4(7): 984-997, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38907103

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by a progressive loss of motor function linked to degenerating extratelencephalic neurons/Betz cells (ETNs). The reasons why these neurons are selectively affected remain unclear. Here, to understand the unique molecular properties that may sensitize ETNs to ALS, we performed RNA sequencing of 79,169 single nuclei from cortices of patients and controls. In both patients and unaffected individuals, we found significantly higher expression of ALS risk genes in THY1+ ETNs, regardless of diagnosis. In patients, this was accompanied by the induction of genes involved in protein homeostasis and stress responses that were significantly induced in a wide collection of ETNs. Examination of oligodendroglial and microglial nuclei revealed patient-specific downregulation of myelinating genes in oligodendrocytes and upregulation of an endolysosomal reactive state in microglia. Our findings suggest that selective vulnerability of extratelencephalic neurons is partly connected to their intrinsic molecular properties sensitizing them to genetics and mechanisms of degeneration.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurons , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Risk Factors , Microglia/metabolism , Microglia/pathology , Cell Nucleus/metabolism , Cell Nucleus/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Male , Single-Cell Analysis , Sequence Analysis, RNA , Female , Middle Aged , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Degeneration/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL