Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(6): 3756-3774, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38713492

ABSTRACT

We report size- and shape-controlled polymer brushes based on l-amino acid bioresource and study the role of polymer topology on the enzymatic biodegradation and deep-tissue penetration under in vitro and in vivo. For this purpose, l-tyrosine-based propargyl-functionalized monomer is tailor-made and polymerized via solvent-free melt polycondensation strategy to yield hydrophobic and clickable biodegradable poly(ester-urethane)s. Postpolymerization click chemistry strategy is applied to make well-defined amphiphilic one-dimensional rodlike and three-dimensional spherical polymer brushes by merely varying the lengths of PEG-azides in the reaction. These core-shell polymer brushes are found to be nontoxic and nonhemolytic and capable of loading clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared biomarker IR-780. In vitro enzymatic drug-release kinetics and lysotracker-assisted real-time live-cell confocal bioimaging revealed that the rodlike polymer brush is superior than its spherical counterparts for faster cellular uptake and enzymatic biodegradation at the endolysosomal compartments to release DOX at the nucleus. Further, in vivo live-animal bioimaging by IVIS technique established that the IR-780-loaded rodlike polymer brush exhibited efficient deep-tissue penetration ability and emphasized the importance of polymer brush topology control for biological activity. Polymer brushes exhibit good stability in the blood plasma for more than 72 h, they predominately accumulate in the digestive organs like liver and kidney, and they are less toxic to heart and brain tissues. IVIS imaging of cryotome tissue slices of organs confirmed the deep-penetrating ability of the polymer brushes. The present investigation opens opportunity for bioderived and biodegradable polymer brushes as next-generation smart drug-delivery scaffolds.


Subject(s)
Doxorubicin , Drug Delivery Systems , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Animals , Mice , Humans , Drug Delivery Systems/methods , Drug Carriers/chemistry , Amino Acids/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Tissue Distribution , Biodegradable Plastics/chemistry
2.
Wiley Interdiscip Rev RNA ; 15(3): e1847, 2024.
Article in English | MEDLINE | ID: mdl-38702948

ABSTRACT

The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Subject(s)
RNA, Untranslated , Animals , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Humans , Behavior, Animal , Gene Expression Regulation
3.
Nucleic Acids Res ; 51(17): 9415-9431, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37558241

ABSTRACT

Nuclear-retained long non-coding RNAs (lncRNAs) including MALAT1 have emerged as critical regulators of many molecular processes including transcription, alternative splicing and chromatin organization. Here, we report the presence of three conserved and thermodynamically stable RNA G-quadruplexes (rG4s) located in the 3' region of MALAT1. Using rG4 domain-specific RNA pull-down followed by mass spectrometry and RNA immunoprecipitation, we demonstrated that the MALAT1 rG4 structures are specifically bound by two nucleolar proteins, Nucleolin (NCL) and Nucleophosmin (NPM). Using imaging, we found that the MALAT1 rG4s facilitate the localization of both NCL and NPM to nuclear speckles, and specific G-to-A mutations that disrupt the rG4 structures compromised the localization of both NCL and NPM in speckles. In vitro biophysical studies established that a truncated version of NCL (ΔNCL) binds tightly to all three rG4s. Overall, our study revealed new rG4s within MALAT1, established that they are specifically recognized by NCL and NPM, and showed that disrupting the rG4s abolished localization of these proteins to nuclear speckles.


Subject(s)
G-Quadruplexes , RNA, Long Noncoding , Nucleophosmin , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Long Noncoding/genetics , Humans , Nucleolin
4.
Biomacromolecules ; 19(6): 2166-2181, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29664622

ABSTRACT

Multistimuli-responsive l-tyrosine-based amphiphilic poly(ester-urethane) nanocarriers were designed and developed for the first time to administer anticancer drugs in cancer tissue environments via thermoresponsiveness and lysosomal enzymatic biodegradation from a single polymer platform. For this purpose, multifunctional l-tyrosine monomer was tailor-made with a PEGylated side chain at the phenolic position along with urethane and carboxylic ester functionalities. Under melt dual ester-urethane polycondensation, the tyrosine monomer reacted with diols to produce high molecular weight amphiphilic poly(ester-urethane)s. The polymers produced 100 ± 10 nm spherical nanoparticles in aqueous medium, and they exhibited thermoresponsiveness followed by phase transition from clear solution into a turbid solution in heating/cooling cycles. Variable temperature transmittance, dynamic light scattering, and 1H NMR studies revealed that the polymer chains underwent reversible phase transition from coil-to-expanded chain conformation for exhibiting the thermoresponsive behavior. The lower critical solution temperature of the nanocarriers was found to correspond to cancer tissue temperature (at 42-44 °C), which was explored as an extracellular trigger (stimuli-1) for drug delivery through the disassembly process. The ester bond in the poly(ester-urethane) backbones readily underwent enzymatic biodegradation in the lysosomal compartments that served as intracellular stimuli (stimuli-2) to deliver drugs. Doxorubicin (DOX) and camptothecin (CPT) drug-loaded polymer nanocarriers were tested for cellular uptake and cytotoxicity studies in the normal WT-MEF cell line and cervical (HeLa) and breast (MCF7) cancer cell lines. In vitro drug release studies revealed that the polymer nanoparticles were stable under physiological conditions (37 °C, pH 7.4) and they exclusively underwent disassembly at cancer tissue temperature (at 42 °C) and biodegradation by lysosomal-esterase enzyme to deliver 90% of DOX and CPT. Drug-loaded polymer nanoparticles exhibited better cytotoxic effects than their corresponding free drugs. Live cell confocal microscopy imaging experiments with lysosomal tracker confirmed the endocytosis of the polymer nanoparticles and their biodegradation in the lysosomal compartments in cancer cells. The increment in the drug content in the cells incubated at 42 °C compared to 37 °C supported the enhanced drug uptake by the cancer cells under thermoresponsive stimuli. The present work creates a new platform for the l-amino acid multiple-responsive polymer nanocarrier platform for drug delivery, and the proof-of-concept was successfully demonstrated for l-tyrosine polymers in cervical and breast cancer cells.


Subject(s)
Camptothecin , Doxorubicin , Drug Delivery Systems/methods , Nanoparticles , Neoplasms/drug therapy , Polyesters , Polyurethanes , Animals , Camptothecin/chemistry , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Endocytosis/drug effects , HeLa Cells , Humans , Lysosomes/metabolism , Lysosomes/pathology , MCF-7 Cells , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Polyesters/chemistry , Polyesters/pharmacokinetics , Polyesters/pharmacology , Polyurethanes/chemistry , Polyurethanes/pharmacokinetics , Polyurethanes/pharmacology , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL