Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11096, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750077

ABSTRACT

Skin tissue is recognized to exhibit rate-dependent mechanical behavior under various loading conditions. Here, we report that the full-thickness burn human skin exhibits rate-independent behavior under uniaxial tensile loading conditions. Mechanical properties, namely, ultimate tensile stress, ultimate tensile strain, and toughness, and parameters of Veronda-Westmann hyperelastic material law were assessed via uniaxial tensile tests. Univariate hypothesis testing yielded no significant difference (p > 0.01) in the distributions of these properties for skin samples loaded at three different rates of 0.3 mm/s, 2 mm/s, and 8 mm/s. Multivariate multiclass classification, employing a logistic regression model, failed to effectively discriminate samples loaded at the aforementioned rates, with a classification accuracy of only 40%. The median values for ultimate tensile stress, ultimate tensile strain, and toughness are computed as 1.73 MPa, 1.69, and 1.38 MPa, respectively. The findings of this study hold considerable significance for the refinement of burn care training protocols and treatment planning, shedding new light on the unique, rate-independent behavior of burn skin.


Subject(s)
Burns , Skin , Stress, Mechanical , Tensile Strength , Humans , Biomechanical Phenomena , Male , Female , Middle Aged , Adult , Elasticity , Skin Physiological Phenomena
2.
J Mech Behav Biomed Mater ; 141: 105778, 2023 05.
Article in English | MEDLINE | ID: mdl-36965215

ABSTRACT

This article develops statistical machine learning models to predict the mechanical properties of skin tissue subjected to thermal injury based on the Raman spectra associated with conformational changes of the molecules in the burned tissue. Ex vivo porcine skin tissue samples were exposed to controlled burn conditions at 200 °F for five different durations: (i) 10s, (ii) 20s, (iii) 30s, (iv) 40s, and (v) 50s. For each burn condition, Raman spectra of wavenumbers 500-2000 cm-1 were measured from the tissue samples, and tensile testing on the same samples yielded their material properties, including, ultimate tensile strain, ultimate tensile stress, and toughness. Partial least squares regression models were established such that the Raman spectra, describing conformational changes in the tissue, could accurately predict ultimate tensile stress, toughness, and ultimate tensile strain of the burned skin tissues with R2 values of 0.8, 0.8, and 0.7, respectively, using leave-two-out cross validation scheme. An independent assessment of the resultant models showed that amino acids, proteins & lipids, and amide III components of skin tissue significantly influence the prediction of the properties of the burned skin tissue. In contrast, amide I has a lesser but still noticeable effect. These results are consistent with similar observations found in the literature on the mechanical characterization of burned skin tissue.


Subject(s)
Amides , Skin , Animals , Swine , Least-Squares Analysis , Machine Learning
3.
Sci Rep ; 12(1): 21398, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496535

ABSTRACT

This work compares the mechanical response of synthetic tissues used in burn care simulators from ten different manufacturers with that of ex vivo full thickness burned porcine skin as a surrogate for human skin tissues. This is of high practical importance since incorrect mechanical properties of synthetic tissues may introduce a negative bias during training due to the inaccurate haptic feedback from burn care simulator. A negative training may result in inadequately performed procedures, such as in escharotomy, which may lead to muscle necrosis endangering life and limb. Accurate haptic feedback in physical simulators is necessary to improve the practical training of non-expert providers for pre-deployment/pre-hospital burn care. With the U.S. Army's emerging doctrine of prolonged field care, non-expert providers must be trained to perform even invasive burn care surgical procedures when indicated. The comparison reported in this article is based on the ultimate tensile stress, ultimate tensile strain, and toughness that are measured at strain rates relevant to skin surgery. A multivariate analysis using logistic regression reveals significant differences in the mechanical properties of the synthetic and the porcine skin tissues. The synthetic and porcine skin tissues show a similar rate dependent behavior. The findings of this study are expected to guide the development of high-fidelity burn care simulators for the pre-deployment/pre-hospital burn care provider education.


Subject(s)
Feedback , Humans , Swine , Animals
4.
Sci Rep ; 12(1): 4565, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296755

ABSTRACT

Porcine skin is considered a de facto surrogate for human skin. However, this study shows that the mechanical characteristics of full thickness burned human skin are different from those of porcine skin. The study relies on five mechanical properties obtained from uniaxial tensile tests at loading rates relevant to surgery: two parameters of the Veronda-Westmann hyperelastic material model, ultimate tensile stress, ultimate tensile strain, and toughness of the skin samples. Univariate statistical analyses show that human and porcine skin properties are dissimilar (p < 0.01) for each loading rate. Multivariate classification involving the five mechanical properties using logistic regression can successfully separate the two skin types with a classification accuracy exceeding 95% for each loading rate individually as well as combined. The findings of this study are expected to guide the development of effective training protocols and high-fidelity simulators to train burn care providers.


Subject(s)
Skin , Animals , Biomechanical Phenomena , Humans , Stress, Mechanical , Swine , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...