Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 150
1.
Biochimie ; 223: 23-30, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38561076

Five host-defense peptides (figainin 2PL, hylin PL, raniseptin PL, plasticin PL, and peptide YL) were isolated from norepinephrine-stimulated skin secretions of the banana tree dwelling frog Boana platanera (Hylidae; Hylinae) collected in Trinidad. Raniseptin PL (GVFDTVKKIGKAVGKFALGVAKNYLNS.NH2) and figainin 2PL (FLGTVLKLGKAIAKTVVPMLTNAMQPKQ. NH2) showed potent and rapid bactericidal activity against a range of clinically relevant Gram-positive and Gram-negative ESKAPE + pathogens and Clostridioides difficile. The peptides also showed potent cytotoxic activity (LC50 values < 30 µM) against A549, MDA-MB-231 and HT29 human tumor-derived cell lines but appreciably lower hemolytic activity against mouse erythrocytes (LC50 = 262 ± 14 µM for raniseptin PL and 157 ± 16 µM for figainin 2PL). Hylin PL (FLGLIPALAGAIGNLIK.NH2) showed relatively weak activity against microorganisms but was more hemolytic. The glycine-leucine-rich peptide with structural similarity to the plasticins (GLLSTVGGLVGGLLNNLGL.NH2) and the non-cytotoxic peptide YL (YVPGVIESLL.NH2) lacked antimicrobial and cytotoxic activities. Hylin PL, raniseptinPL and peptide YL stimulated the rate of release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥100 nM. Peptide YL was the most effective (2.3-fold increase compared with basal rate at 1 µM concentration) and may represent a template for the design of a new class of incretin-based anti-diabetic drugs.

2.
Front Microbiol ; 15: 1332448, 2024.
Article En | MEDLINE | ID: mdl-38505547

Previously, we pointed out in P. aeruginosa PAO1 biofilm cells the accumulation of a hypothetical protein named PA3731 and showed that the deletion of the corresponding gene impacted its biofilm formation capacity. PA3731 belongs to a cluster of 4 genes (pa3732 to pa3729) that we named bac for "Biofilm Associated Cluster." The present study focuses on the PA14_16140 protein, i.e., the PA3732 (BacA) homolog in the PA14 strain. The role of BacA in rhamnolipid secretion, biofilm formation and virulence, was confirmed by phenotypic experiments with a bacA mutant. Additional investigations allow to advance that the bac system involves in fact 6 genes organized in operon, i.e., bacA to bacF. At a molecular level, quantitative proteomic studies revealed an accumulation of the BAC cognate partners by the bacA sessile mutant, suggesting a negative control of BacA toward the bac operon. Finally, a first crystallographic structure of BacA was obtained revealing a structure homologous to chaperones or/and regulatory proteins.

3.
Antibiotics (Basel) ; 12(9)2023 Sep 04.
Article En | MEDLINE | ID: mdl-37760701

Envenomation by the Trinidad thick-tailed scorpion Tityus trinitatis may result in fatal myocarditis and there is a high incidence of acute pancreatitis among survivors. Peptidomic analysis (reversed-phase HPLC followed by MALDI-TOF mass spectrometry and automated Edman degradation) of T. trinitatis venom led to the isolation and characterization of three peptides with antimicrobial activity. Their primary structures were established asTtAP-1 (FLGSLFSIGSKLLPGVFKLFSRKKQ.NH2), TtAP-2 (IFGMIPGLIGGLISAFK.NH2) and TtAP-3 (FFSLIPSLIGGLVSAIK.NH2). In addition, potassium channel and sodium channel toxins, present in the venom in high abundance, were identified by CID-MS/MS sequence analysis. TtAP-1 was the most potent against a range of clinically relevant Gram-positive and Gram-negative aerobes and against the anaerobe Clostridioides difficile (MIC = 3.1-12.5 µg/mL). At a concentration of 1× MIC, TtAP-1 produced rapid cell death (<15 min against Acinetobacter baumannii and Staphylococcus aureus). The therapeutic potential of TtAP-1 as an anti-infective agent is limited by its high hemolytic activity (LC50 = 18 µg/mL against mouse erythrocytes) but the peptide constitutes a template for the design of analogs that maintain the high bactericidal activity against ESKAPE pathogens but are less toxic to human cells. It is suggested that the antimicrobial peptides in the scorpion venom facilitate the action of the neurotoxins by increasing the membrane permeability of cells from either prey or predator.

4.
Amino Acids ; 55(10): 1349-1359, 2023 Oct.
Article En | MEDLINE | ID: mdl-37548712

The amphibian family Leptodactylidae is divided into three sub-families: Leiuperinae, Leptodactylinae, and Paratelmatobiinae. Host-defense peptides (HDPs) present in the skins of frogs belonging to the Leptodactylinae have been studied extensively, but information is limited  regarding peptides from Leiuperinae species. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Tungara frog Engystomops pustulosus (Leiuperinae) collected in Trinidad led to the isolation and structural characterization of previously undescribed pustulosin-1 (FWKADVKEIG KKLAAKLAEELAKKLGEQ), [Q28E] pustulosin-1 (pustulosin-2), and pustulosin-3 (DWKETAKELLKKIGAKVAQVISDKLNPAPQ). The primary structures of these peptides do not resemble those of previously described frog skin HDPs. In addition, the secretions contained tigerinin-1EP (GCKTYLIEPPVCT) with structural similarity to the tigerinins previously identified in skin secretions from frogs from the family Dicroglossidae. Pustulosin-1 and -3 adopted extended α-helical conformations in 25% trifluoroethanol-water and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). Pustulosin-1 and -3 displayed cytotoxic activity against a range of human tumor-derived cell lines (A549, MDA-MB-231, and HT29), but their therapeutic potential for development into anti-cancer agents is limited by their comparable cytotoxic activity against non-neoplastic human umbilical vein endothelial cells. The peptides also displayed weak antimicrobial activity against Escherichia coli (MIC = 125 µM) but were inactive against Staphylococcus aureus. Tigerinin-1EP was inactive against both the tumor-derived cells and bacteria.


Antineoplastic Agents , Neoplasms , Animals , Humans , Antimicrobial Cationic Peptides/chemistry , Endothelial Cells/metabolism , Amphibian Proteins/chemistry , Anura/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Neoplasms/metabolism , Skin/metabolism , Microbial Sensitivity Tests
5.
Antibiotics (Basel) ; 12(7)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37508198

Frogs from the extensive amphibian family Hylidae are a rich source of peptides with therapeutic potential. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae) collected in Trinidad led to the isolation and structural characterization of five host-defense peptides with limited structural similarity to figainin 2 and picturin peptides from other frog species belonging to the genus Boana. In addition, the skin secretions contained high concentrations of tryptophyllin-BN (WRPFPFL) in both C-terminally α-amidated and non-amidated forms. Figainin 2BN (FLGVALKLGKVLG KALLPLASSLLHSQ) and picturin 1BN (GIFKDTLKKVVAAVLTTVADNIHPK) adopt α-helical conformations in trifluroethanol-water mixtures and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). The CD data also indicate contributions from turn structures. Both peptides and picturin 2BN (GLMDMLKKVGKVALT VAKSALLP) inhibited the growth of clinically relevant Gram-negative and Gram-positive bacteria with MIC values in the range 7.8-62.5 µM. Figainin 2BN was potently cytotoxic to A549, MDA-MB-231 and HT-29 human tumor-derived cells (LC50 = 7-14 µM) but displayed comparable potency against non-neoplastic HUVEC cells (LC50 = 15 µM) indicative of lack of selectivity for cancer cells.

6.
Article En | MEDLINE | ID: mdl-36868141

Skin secretions of certain frog species represent a source of host-defense peptides (HDPs) with therapeutic potential and their primary structures provide insight into taxonomic and phylogenetic relationships. Peptidomic analysis was used to characterize the HDPs in norepinephrine-stimulated skin secretions from the Amazon River frog Lithobates palmipes (Ranidae) collected in Trinidad. A total of ten peptides were purified and identified on the basis of amino acid similarity as belonging to the ranatuerin-2 family (ranatuerin-2PMa, -2PMb, -2PMc, and-2PMd), the brevinin-1 family (brevinin-1PMa, -1PMb, -1PMc and des(8-14)brevinin-1PMa) and the temporin family (temporin-PMa in C-terminally amidated and non-amidated forms). Deletion of the sequence VAAKVLP from brevinin-1PMa (FLPLIAGVAAKVLPKIFCAISKKC) in des[(8-14)brevinin-1PMa resulted in a 10-fold decrease in potency against Staphylococcus aureus (MIC = 31 µM compared with 3 µM) and a > 50-fold decrease in hemolytic activity but potency against Echerichia coli was maintained (MIC = 62.5 µM compared with 50 µM). Temporin-PMa (FLPFLGKLLSGIF.NH2) inhibited growth of S. aureus (MIC = 16 µM) but the non-amidated form of the peptide lacked antimicrobial activity. Cladistic analysis based upon the primary structures of ranaturerin-2 peptides supports the division of New World frogs of the family Ranidae into the genera Lithobates and Rana. A sister-group relationship between L. palmipes and Warszewitsch's frog Lithobates warszewitschii is indicated within a clade that includes the Tarahumara frog Lithobates tarahumarae. The study has provided further evidence that peptidomic analysis of HDPs in frog skin secretions is a valuable approach to elucidation of the evolutionary history of species within a particular genus.


Ranidae , Staphylococcus aureus , Animals , Amino Acid Sequence , Phylogeny , Staphylococcus aureus/metabolism , Ranidae/metabolism , Amphibian Proteins/metabolism , Skin/metabolism
7.
Dose Response ; 20(4): 15593258221141585, 2022.
Article En | MEDLINE | ID: mdl-36458281

Context: The liver is the organ by which the majority of substances are metabolized, including psychotropic drugs. Lithium (Li) used as drug for many neurological disorders such as bipolar disorders. Objective: This study aims to assess lithium toxicity and to evaluate the hepatic-protective properties of a grape skin seed and extract (GSSE). Materials and methods: Twenty-four male Wistar rats were exposed for 30 days to either various lithium concentrations, GSSE alone, or lithium supplemented with GSSE. The proteomic analysis revealed alterations of liver protein profiles after lithium treatments that were successfully identified by mass spectrometry. Results: Lithium treatment induced an oxidative damage by the alteration of antioxidant enzymes activities such as superoxide dismutase, CAT, and Gpx. The regulated proteins are mainly involved in the respiratory electron transport chain, detoxification processes, ribosomal stress pathway, glycolysis, and cytoskeleton. Proteins were differentially expressed in a dose-dependent manner. Interestingly, GSSE reversed the situation and restored the level of liver proteins whose abundance was modified after lithium treatment, arguing for its protective activity. Conclusion: Our data demonstrated the ability of proteomic analysis to underline the toxicity mechanisms of lithium in animal models. Based on these results, GSSE may be envisaged as a nutritional supplement to weaken the liver toxicity of lithium.

8.
J Funct Biomater ; 13(4)2022 Nov 11.
Article En | MEDLINE | ID: mdl-36412878

The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9-574 kPa) and HA (hyaluronic acid gels, 44 Pa-2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria's mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth.

9.
J Proteome Res ; 21(6): 1392-1407, 2022 06 03.
Article En | MEDLINE | ID: mdl-35482949

Pseudomonas aeruginosa is an opportunistic pathogen highly resistant to a wide range of antimicrobial agents, making its infections very difficult to treat. Since microorganisms need to perpetually adapt to their surrounding environment, understanding the effect of carbon sources on P. aeruginosa physiology is therefore essential to avoid increasing drug-resistance and better fight this pathogen. By a global proteomic approach and phenotypic assays, we investigated the impact of various carbon source supplementations (glucose, glutamate, succinate, and citrate) on the physiology of the P. aeruginosa PA14 strain. A total of 581 proteins were identified as differentially expressed in the 4 conditions. Most of them were more abundant in citrate supplementation and were involved in virulence, motility, biofilm development, and antibiotic resistance. Phenotypic assays were performed to check these hypotheses. By coupling all this data, we highlight the importance of the environment in which the bacterium evolves on its metabolism, and thus the necessity to better understand the metabolic pathways implied in its adaptative response according to the nutrient availability.


Pseudomonas Infections , Pseudomonas aeruginosa , Bacterial Proteins/metabolism , Biofilms , Carbon/metabolism , Citrates/metabolism , Citrates/pharmacology , Dietary Supplements , Humans , Proteomics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism
10.
Front Microbiol ; 12: 785161, 2021.
Article En | MEDLINE | ID: mdl-35095797

Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid-liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.

11.
Antibiotics (Basel) ; 9(10)2020 Oct 20.
Article En | MEDLINE | ID: mdl-33092132

Ocellatins are peptides produced in the skins of frogs belonging to the genus Leptodactylus that generally display weak antimicrobial activity against Gram-negative bacteria only. Peptidomic analysis of norepinephrine-stimulated skin secretions from Leptodactylus insularum Barbour 1906 and Leptodactylus nesiotus Heyer 1994, collected in the Icacos Peninsula, Trinidad, led to the purification and structural characterization of five ocellatin-related peptides from L. insularum (ocellatin-1I together with its (1-16) fragment, ocellatin-2I and its (1-16) fragment, and ocellatin-3I) and four ocellatins from L. nesiotus (ocellatin-1N, -2N, -3N, and -4N). While ocellatins-1I, -2I, and -1N showed a typically low antimicrobial potency against Gram-negative bacteria, ocellatin-3N (GIFDVLKNLAKGVITSLAS.NH2) was active against an antibiotic-resistant strain of Klebsiella pneumoniae and reference strains of Escherichia coli, K. pneumoniae, Pseudomonas aeruginosa, and Salmonella typhimurium (minimum inhibitory concentrations (MICs) in the range 31.25-62.5 µM), and was the only peptide active against Gram-positive Staphylococcus aureus (MIC = 31.25 µM) and Enterococcus faecium (MIC = 62.5 µM). The therapeutic potential of ocellatin-3N is limited by its moderate hemolytic activity (LC50 = 98 µM) against mouse erythrocytes. The peptide represents a template for the design of long-acting, non-toxic, and broad-spectrum antimicrobial agents for targeting multidrug-resistant pathogens.

12.
Front Neurosci ; 14: 519, 2020.
Article En | MEDLINE | ID: mdl-32655346

Jegou et al. (2012) have reported prenatal alcohol exposure (PAE)-induced reductions of angiogenesis-related proteins in mouse placenta. These effects were associated with striking alterations in microvascular development in neonatal cerebral cortex. Here, we employed a rat model of moderate PAE to search for additional proteins whose placental and fetal cortical expression is altered by PAE, along with a subsequent examination of fetal cerebral cortical alterations associated with altered protein expression. Long-Evans rat dams voluntarily consumed either a 0 or 5% ethanol solution 4 h each day throughout gestation. Daily ethanol consumption, which resulted in a mean peak maternal serum ethanol concentration of 60.8 mg/dL, did not affect maternal weight gain, litter size, or placental or fetal body weight. On gestational day 20, rat placental: fetal units were removed by Caesarian section. Placental protein expression, analyzed by 2D-PAGE - tandem mass spectroscopy, identified a total of 1,117 protein spots, 20 of which were significantly altered by PAE. To date, 14 of these PAE-altered proteins have been identified. Western blotting confirmed the alterations of two of these placental proteins, namely, annexin-A4 (ANX-A4) and cerebral cavernous malformation protein 3 (CCM-3). Specifically, PAE elevated ANX-A4 and decreased CCM-3 in placenta. Subsequently, these two proteins were measured in fetal cerebral cortex, along with radiohistochemical studies of VEGF binding and histofluorescence studies of microvascular density in fetal cerebral cortex. PAE elevated ANX-A4 and decreased CCM-3 in fetal cerebral cortex, in a pattern similar to the alterations observed in placenta. Further, both VEGF receptor binding and microvascular density and orientation, measures that are sensitive to reduced CCM-3 expression in developing brain, were significantly reduced in the ventricular zone of fetal cerebral cortex. These results suggest that the expression angiogenesis-related proteins in placenta might serve as a biomarker of ethanol-induced alterations in microvascular development in fetal brain.

13.
J Proteome Res ; 19(4): 1800-1811, 2020 04 03.
Article En | MEDLINE | ID: mdl-32182430

Using an integrated transcriptomic and proteomic approach, we characterized the venom peptidome of the European red ant, Manica rubida. We identified 13 "myrmicitoxins" that share sequence similarities with previously identified ant venom peptides, one of them being identified as an EGF-like toxin likely resulting from a threonine residue modified by O-fucosylation. Furthermore, we conducted insecticidal assays of reversed-phase HPLC venom fractions on the blowfly Lucilia caesar, permitting us to identify six myrmicitoxins (i.e., U3-, U10-, U13-, U20-MYRTX-Mri1a, U10-MYRTX-Mri1b, and U10-MYRTX-Mri1c) with an insecticidal activity. Chemically synthesized U10-MYRTX-Mri1a, -Mri1b, -Mri1c, and U20-MYRTX-Mri1a irreversibly paralyzed blowflies at the highest doses tested (30-125 nmol·g-1). U13-MYRTX-Mri1a, the most potent neurotoxic peptide at 1 h, had reversible effects after 24 h (150 nmol·g-1). Finally, U3-MYRTX-Mri1a has no insecticidal activity, even at up to 55 nmol·g-1. Thus, M. rubida employs a paralytic venom rich in linear insecticidal peptides, which likely act by disrupting cell membranes.


Ant Venoms , Ants , Animals , Peptides , Proteomics , Venoms
14.
Int J Biol Macromol ; 139: 468-474, 2019 Oct 15.
Article En | MEDLINE | ID: mdl-31376454

To prevent bacterial adhesion and contamination, biomaterials exhibiting both antiadhesive and biocidal properties are the most promising way. However, control of the properties combination is not so easy due, in particular, to antagonist mechanisms. Antibacterial surfaces against Staphylococcus epidermidis adhesion were here elaborated by using both nisin grafting and repelling polysaccharide coating. We evaluated two strategies aiming to improve the antimicrobial peptide (AMP) immobilization parameters (i.e., the accessibility and/or local density) in order to obtain the best antimicrobial activity on surfaces. We thus (i) grafted the nisin on a surface previously coated with hydrolyzed hyaluronic acid (HA) (to decrease the length of the polysaccharide chains) or (ii) coupled nisin and HA in solution before grafting this complex on surfaces. XPS analysis pointed out a lower amount of nisin on the surface for both approaches compared to the immobilization of nisin on native HA. However, an antibacterial activity was maintained, probably due to a higher local density of the AMP when surfaces were modified with hydrolyzed hyaluronic acid, leading to a better combination of antiadhesive-biocidal properties. Microscopy fluorescent observations demonstrated that accumulation of dead cells was also avoided by some coatings architecture.


Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Coated Materials, Biocompatible , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Chemical Phenomena , Hydrolysis , Spectrum Analysis
15.
Metab Brain Dis ; 34(3): 889-907, 2019 06.
Article En | MEDLINE | ID: mdl-30796716

Stroke is one of the leading causes of long-lasting disability in human and oxidative stress an important underlying cause. Molecular insights into pathophysiology of ischemic stroke are still obscure, and the present study investigated the protective effect of high dosage Grape Seed Extract (GSE 2.5 g/kg) on brain ischemia-reperfusion (I/R) injury using a proteomic approach. Ischemia was realized by occlusion of the common carotid arteries for 30 min followed by 1 h reperfusion on control or GSE pre-treated rats, and a label-free quantification followed by mass spectrometry analysis used to evaluate I/R induced alterations in protein abundance and metabolic pathways as well as the protection afforded by GSE. I/R-induced whole brain ionogram dyshomeostasis, ultrastructural alterations, as well as inflammation into hippocampal dentate gyrus area, which were evaluated using ICP-OES, transmission electron microscopy and immuno-histochemistry respectively. I/R altered the whole brain proteome abundance among which 108 proteins were significantly modified (35 up and 73 down-regulated proteins). Eighty-four proteins were protected upon GSE treatment among which 27 were up and 57 down-regulated proteins, suggesting a potent protective effect of GSE close to 78%of the disturbed proteome. Furthermore, GSE efficiently prevented the brain from I/R-induced ion dyshomeostasis, ultrastructural alterations, inflammatory biomarkers as CD56 or CD68 and calcium burst within the hippocampus. To conclude, a potent protective effect of GSE on brain ischemia is evidenced and clinical trials using high dosage GSE should be envisaged on people at high risk for stroke.


Brain Ischemia/drug therapy , Brain/drug effects , Grape Seed Extract/pharmacology , Reperfusion Injury/drug therapy , Animals , Antioxidants/pharmacology , Down-Regulation/drug effects , Male , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Proteomics/methods , Rats, Sprague-Dawley
16.
J Proteome Res ; 18(3): 923-933, 2019 03 01.
Article En | MEDLINE | ID: mdl-30672296

Pseudomonas aeruginosa is a multi-drug resistant human pathogen largely involved in nosocomial infections. Today, effective antibacterial agents are lacking. Exploring the bacterial physiology at the post-translational modifications (PTM) level may contribute to the renewal of fighting strategies. Indeed, some correlations between PTMs and the bacterial virulence, adaptation, and resistance have been shown. In a previous study performed in P. aeruginosa, we reported that many virulence factors like chitin-binding protein CbpD and elastase LasB were multiphosphorylated. Besides phosphorylation, other PTMs, like those occurring on lysine, seem to play key roles in bacteria. In the present study, we investigated for the first time the lysine succinylome and acetylome of the extracellular compartment of P. aeruginosa by using a two-dimensional immunoaffinity approach. Some virulence factors were identified as multimodified on lysine residues, among them, LasB and CbpD. Lysine can be modified by a wide range of chemical groups. In order to check the presence of other chemical groups on modified lysines identified on LasB and CbpD, we used 1- and 2- dimensional gel electrophoresis approaches to target lysine modified by 7 other modifications: butyrylation, crotonylation, dimethylation, malonylation, methylation, propionylation, and trimethylation. We showed that some lysines of these two virulence factors were modified by these 9 different PTMs. Interestingly, we found that the PTMs recovered on these two virulence factors were different than those previously reported in the intracellular compartment.


Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Lysine/metabolism , Metalloendopeptidases/metabolism , Protein Processing, Post-Translational , Pseudomonas aeruginosa/pathogenicity , Virulence Factors/metabolism , Electrophoresis, Gel, Two-Dimensional , Humans
17.
Article En | MEDLINE | ID: mdl-30599276

Peptidomic analysis of norepinephrine-stimulated skin secretions from the Greek stream frog Rana graeca Boulenger, 1891 led to the identification and structural characterization of a range of host-defense peptides. These comprised brevinin-1GRa, brevinin-1GRb and an N-terminally extended form of brevinin-1GRb, ranatuerin-2GR together with its oxidized form and (11-28) fragment, temporin-GRa, temporin-GRb and its non-amidated form, and a melittin-related peptide, MRP-GR and its (1-18) fragment. The most abundant peptide, MRP-GR significantly (P < 0.001) stimulated insulin release from BRIN-BD11 clonal ß-cells at concentrations ≥0.1 nM. Rana graeca (formerly Rana graeca graeca) and the morphologically similar Italian stream frog Rana italica Dubois, 1987 (formerly Rana graeca italica) were originally regarded as sub-species. However, the primary structures of the host defense peptides from both frogs support the claim based upon comparisons of the nucleotide sequences of S1 satellite DNA that R. graeca and R. italica are separate species. Cladistic analyses based upon the primary structures of the brevinin-1 and ranatuerin-2 peptides from Eurasian frogs indicate a close phylogenetic relationship between R. graeca and Rana latastei whereas R. italica is most closely related to Rana dalmatina.


Amphibian Proteins/metabolism , Peptides/metabolism , Phylogeny , Ranidae/classification , Skin/metabolism , Amino Acid Sequence , Amphibian Proteins/chemistry , Animals , Cell Line , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Insulin/metabolism , Peptides/chemistry , Ranidae/metabolism , Rats , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Appl Biochem Biotechnol ; 187(4): 1460-1474, 2019 Apr.
Article En | MEDLINE | ID: mdl-30251231

An endophytic Bacillus amyloliquefaciens strain called C5, able to produce biosurfactant lipopeptides with a broad antibacterial activity spectrum, has been isolated from the roots of olive tree. Optimization of antibacterial activity was undertaken using grape seed flour (GSF) substrate at 0.02, 0.2, and 2% (w/v) in M9 medium. Strain C5 exhibited optimal growth and antimicrobial activity (MIC value of 60 µg/ml) when incubated in the presence of 0.2% GSF while lipopeptide production culminated at 2% GSF. Thin layer chromatography analysis of lipopeptide extract revealed the presence of at least three active spots at Rf 0.35, 0.59, and 0.72 at 0.2% GSF. Data were similar to those obtained in LB-rich medium. MALDI-TOF/MS analysis of lipopeptide extract obtained from 0.2% GSF substrate revealed the presence of surfactin and bacillomycin D. These results show that GSF could be used as a low-cost culture medium supplement for optimizing the production of biosurfactants by strain C5.


Bacillus amyloliquefaciens/metabolism , Biotechnology/methods , Flour , Lipopeptides/biosynthesis , Lipopeptides/pharmacology , Seeds/chemistry , Vitis/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests
19.
Int J Antimicrob Agents ; 53(3): 337-342, 2019 Mar.
Article En | MEDLINE | ID: mdl-30423343

Squalamine is a natural polycationic aminosterol extracted from the shark Squalus acanthias. Squalamine displays remarkable efficacy against antimicrobial-resistant Gram-negative and Gram-positive bacteria. Its membranolytic activity and low cytotoxicity make squalamine one of the most promising agents to fight nosocomial pathogens such as Acinetobacter baumannii. In the context of chronic diseases and therapeutic failures associated with this pathogen, the presence of dormant cells, i.e. persisters and viable but non-culturable cells (VBNCs), highly tolerant to antimicrobial compounds is problematic. The aim of this study was to investigate the antibacterial activity of squalamine against this bacterial population of A. baumannii. Bacterial dormancy was induced by cold shock and nutrient starvation in the presence of high doses of either colistin, ciprofloxacin or squalamine. Persisters and VBNCs induced by these treatments were then challenged with 100 mg/L squalamine. The efficacy of each treatment was determined by evaluating culturability on agar medium, membrane integrity (LIVE/DEAD®BacLightTM staining) and respiratory activity (BacLightTM RedoxSensorTM CTC staining) of bacteria. A. baumannii ATCC 17978 generated persisters as well as VBNCs in the presence of high doses of ciprofloxacin but not colistin or squalamine. Squalamine at 100 mg/L (below its haemolytic concentration) was able to kill dormant cells. Squalamine did not induce persister cell or VBNC formation in A. baumannii ATCC 17978. Interestingly, squalamine was significantly active against this type of dormant population generated by ciprofloxacin, making it a very promising anti-persister agent.


Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Microbial Viability/drug effects , Cholestanols/pharmacology , Microbial Sensitivity Tests
20.
Rapid Commun Mass Spectrom ; 32(24): 2113-2121, 2018 Dec 30.
Article En | MEDLINE | ID: mdl-30171632

RATIONALE: Pseudomonas aeruginosa is an opportunistic pathogen bacterium widely considered to be an excellent research model in several areas of molecular studies, namely genomics and proteomics. However, its lipid metabolism is still not totally decrypted. While it is known that this bacterium has the particularity to produce phosphatidylcholine, a lipid mainly found in eukaryotes, other singularities are still to be discovered. METHODS: P. aeruginosa was grown as planktonic cultures to the stationary state. Membrane pellets were collected and lipids were extracted using the Bligh and Dyer protocol. Lipid extracts were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS) using high-resolution mass spectrometer (LTQ Orbitrap Elite, Thermo Scientific) in the negative mode. MSn spectra were recorded both in the Orbitrap and in the ion trap analyzer (collision-induced dissociation (CID) or higher energy collision-induced dissociation (HCD) mode). RESULTS: We observed by mass spectrometry and thin layer chromatography that P. aeruginosa produced an unreferenced lipid in classical growth conditions. MS2 analysis of the unknown ion indicates that it is a phosphatidylglycerol derivative. The exact mass shift corresponds to glucosamine which is largely found in the metabolism of this bacterium. MS3 analysis of secondary ions allowed us to conclude that this lipid is a glucosaminylphosphatidylglycerol, a phosphatidylglycerol derivative containing a glucosamine substituted at C4. CONCLUSIONS: We show here that P. aeruginosa is able to produce glucosaminylphosphatidylglycerols via a probable esterification of phosphatidylglycerols by glucosamine.


Phosphatidylglycerols/chemistry , Pseudomonas aeruginosa/chemistry , Chromatography, Thin Layer , Esterification , Glucosamine/chemistry , Glucosamine/metabolism , Molecular Structure , Phosphatidylglycerols/metabolism , Pseudomonas aeruginosa/metabolism , Spectrometry, Mass, Electrospray Ionization/methods
...